

MONTE CARLO SIMULATIONS OF THE EFFECTS OF UNDERWATER PROPAGATION ON THE PENETRATION AND DEPTH MEASUREMENT BIAS OF AN AIRBORNE LASER BATHYMETER

Rockville, Md. March 1981

NOAA Technical Memorandum OTES 01

# MONTE CARLO SIMULATIONS OF THE EFFECTS OF UNDERWATER PROPAGATION ON THE PENETRATION AND DEPTH MEASUREMENT BIAS OF AN AIRBORNE LASER BATHYMETER 

Gary C. Guenther
Engineering Development Office

Robert W. L. Thomas EG\&G/Washington Analytical Services Center, Inc.

Rockville, Md. March 1981

[^0]
## CONTENTS

Figure captions ..... iv
Abstract ..... vii
1.0 Introduction ..... 1
2.0 Simulation of the transport of light through the water ..... 3
2.1 The relevant physical processes ..... 3
2.2 The simulation method ..... 4
Mean free path ..... 4
Beam attenuation coefficient ..... 5
Single-scatter albedo ..... 5
Phase function ..... 6 ..... 6
Diffuse attenuation coefficient ..... 7
Delay times ..... 7
Scaling ..... 8 ..... 8
Virtual photons ..... 9 ..... 9
Importance sampling ..... 10 ..... 10
Statistical reciprocity
Statistical reciprocity ..... 10 ..... 10
Receiver impulse response function ..... 11
Reference time ..... 13
Bias definition ..... 13
2.3 Interpretation of the results ..... 14
Energy and peak power relationships ..... 14
Bias estimation ..... 19
2.4 Program validation ..... 21
3.0 Discussion of results ..... 23
3.1 The cases treated ..... 24
3.2 Energy and peak power results ..... 27
3.3 Impulse response and bias sensitivity studies ..... 38
3.4 Special cases ..... 46
4.0 Practical requirements for bias correction ..... 50
4.1 Computation of the bias for known inherent parameters ..... 51
4.2 Estimation of the inherent parameters ..... 53
4.3 A1ternative correction strategies ..... 55
5.0 Conclusions ..... 57 ..... 57
References
References ..... 61 ..... 61
Illustrations ..... 62
Appendix A. Format for ASCII impulse response data base ..... 123
Appendix B. Numerical values for computed biases ..... 124

1. Schematic illustration of radiation transport
2. Propagation simulation geometry
3. Definition of narrow-beam attenuation coefficient
4. Description of scattering event
5. Illustration of scaling rule for estimations appropriate to different depths
6. Schematic illustration of virtual photon sampling scheme
7. Geometrical effects on impulse response function
8. Volume scattering function for "clean or "NAVY" water
9. Volume scattering function for "dirty" or "NOS" water
10. Probability of scattering through less than given angle
11. Downwelling energy and total received energy as function of vertical optical depth for "NAVY" water (nadir)
12. Downwelling energy and total received energy as function of vertical optical depth for "NOS" water (nadir)
13. Average values of ratio of diffuse to narrow-beam attenuation coefficients as function of vertical optical depth
14. Normalized attenuation coefficients as function of albedo of single scattering
15. Spatial distribution of pulse energy at the bottom
16. Return peak power as function of vertical optical depth for "NAVY" water (nadir)
17. Return peak power as function of vertical optical depth for "NOS" water (nadir)
18. Average value of the ratio of the system power attenuation coefficient to narrow-beam attenuation coefficient as function of vertical optical depth
19. Average values of ratios of system power and energy attenuation coefficients to narrow-beam attenuation coefficient as function of single-scattering albedo
20. Ratio of average system power attenuation coefficient to average diffuse attenuation coefficient as function of vertical optical depth
21. Slope and intercept parameters for $k / K=m \quad \alpha D+b$ as function of scatter to absorption ratio
22. Return peak power as function of single-scatter albedo (nadir)
23. Downwelling energy and total received energy as function of vertical optical depth (nadir and $45^{\circ}$ )
24. Mean secant of photon path angles from nadir as function to vertical optical depth (nadir and $45^{\circ}$ )
25. Return peak power as function of vertical optical depth at three nadir angles $\left(0^{\circ}, 25^{\circ}, 45^{\circ}\right)$ for "NAVY" water
26. Return peak power as function of vertical optical depth at three nadir angles $\left(0^{\circ}, 25^{\circ}, 45^{\circ}\right)$ for "NOS" water
27. Sensitivity to phase function (1)
28. Sensitivity to phase function (2)
29. Sensitivity to phase function (3)
30. Sensitivity to $\alpha \mathrm{D}$ (1)
31. Sensitivity to $\alpha D$ (2)
32. Sensitivity to nadir angle (1)
33. Sensitivity to nadir angle (2)
34. Sensitivity to nadir angle (3)
35. Sensitivity to albedo for single scattering (1)
36. Sensitivity to albedo for single scattering (2)
37. Sensitivity to albedo for single scattering (3)
38. Sensitivity to albedo for single scattering (4)
39. Sensitivity to albedo for single scattering (5)
40. Sensitivity to linear fractional threshold (1)
41. Sensitivity to linear fractional threshold (2)
42. Depth measurement bias versus pulse location threshold fraction
43. Variability at constant KD (1)
44. Variability at constant KD (2)
45. Variability at constant KD (3)
46. Log-1og plots of leading edge of impulse response function (1)
47. Log-log plots of leading edge of impulse response function (2)
48. Log-log plots of leading edge of impulse response function (3)
49. Log-log plots of leading edge of impulse response function (4)
50. Impulse response full risetimes as function of nadir angle
51. Results for operations at the nadir (1)
52. Results for operations at the nadir (2)
53. Results for operations at the nadir (3)
54. Results for peak direction
55. Results for practical conditions (1)
56. Results for practical conditions (2)
57. Results for practical conditions (3)
58. Depth measurement bias at $20-\mathrm{m}$ depth versus vertical optical depth (recommended parameters)
59. Ratio of volume scattering function at $180^{\circ}$ to diffuse attenuation coefficient as function of single-scattering a1bedo

This report documents the results of a Monte Carlo simulation of underwater light pulse propagation for a geometry applicable to airborne lidar. Actual lidar bottom return pulses will vary considerably in shape and arrival time depending on the water depth, the scanner nadir angle, the incident laser pulse width, the optical properties of the water, the airborne system signal processing electronics, and the depth determining algorithm or procedure. These perturbations of the return signals will cause depth measurement biases which can be considerably larger than the International Hydrographic Bureau sha1low water accuracy requirement. The first step in the estimation of these bias errors is the determination of the impulse response functions of the medium for various permutations of the relevant optical parameters. An output data set consisting of 640 impulse response functions has been generated which provides the basic results of this phase of the investigation.

In general, bias error predictions can be used as bias error correctors which, when applied to the raw depth measurements during post-flight data processing, will significantly reduce the magnitude of the errors. Example bias predictor/ correctors have been calculated from the impulse responses alone. These predictors, which are valid only for the case where the impulse response temporal width is very long compared to the incident laser pulse width (i.e., deep water) and where the signals are processed linearly with a fractional amplitude threshold for the depth determining algorithm, are reported and discussed for a wide range of nadir angle, optical depth, single-scatter albedo, and depth algorithm threshold fraction.

The bias predictors are necessarily parameterized on their driving, inherent optical properties (i.e., beam attenu-
ation coefficient and single-scattering albedo). Neither of these optical properties will be directly measured in the field as part of a typical airborne survey. It is thus necessary to provide continuous estimates of their values based solely on specially processed, ancillary flight data, or to restrict operational parameters in such a way that the resulting biases are small enough to permit ad hoc correction. A preliminary discussion of the required data and how one might make these determinations is reported.

### 1.0 INTRODUCTION

A Monte Carlo simulation program has been developed and exercised to model airborne lidar depth measurement biases caused by radiative transfer processes for impulse laser inputs to a water column. The water parameters and system constraints of the computation are appropriate to airborne laser hydrography systems presently under consideration for use in coastal waters.

Earlier analytical computations by Thomas and Guenther (1979) have indicated the possibility of a significant bias on the deep side for operations of the system at nadir. This bias arises from the multipath transport mechanism by which the laser radiation penetrates the water and is subsequently reflected back through the water to the receiver. This is the so-called "pulse stretching" effect. The impact of this effect on the estimated depth is influenced both by the temporal profile of the incident laser pulse and the return pulse processing electronics, but the key to the quantification of the effect is the generation of a set of response functions for the medium which characterize the temporal history of radiation reaching the receiver for an impulse input.

Monte Carlo simulation is the only practical method of generating the impulse response functions. If other theories existed for computing these functions, they would have to be subjected to simulation validation before we could be confident that the generated function was appropriate to the specified inherent properties of the water column. The Monte Carlo results have been successfully validated (see Section 2.4) by comparing certain basic outputs with previously documented relationships from the literature such as the ratio of diffuse to beam attenuation coefficients versus single-scattering albedo (Gordon et al. 1975, Timofeyeva 1972).

Section 2.0 contains a detailed description of the relevant physical processes, the mechanics of the simulation, the form and utility of the results, and the validation criteria. Section 3.0 describes the results obtained from analysis of the simulation outputs. Subsections discuss the energy and power relationships and the impulse response and depth measurement bias results which are presented in two basic sections: first a sensitivity study in which each of the major parameters is varied in turn against a representative background of the remaining parameters; and second, a selection of cases of special interest.

Depth measurement bias predictions are parameterized on inherent water properties (such as beam attenuation coefficient and single-scattering albedo) and system constraints. If these parameters are known or can be estimated, the bias predictions obtained from the simulation can be suitably modified to account for depth dependence and system electronics and applied to field data as "bias correctors" to reduce the magnitude of the raw biases in post-processing. This technique is considered mandatory if international hydrographic accuracy standards are to be met. Estimation of the relevant inherent water parameters from ancillary airborne lidar data poses a serious problem which will strongly impact system data processing requirements. Preliminary analyses and conclusions in this area are reported in Section 4.0 which describes the protocol which will be required to actually perform bias corrections. Overall conclusions follow in Section 5.0.

### 2.0 SIMULATION OF THE TRANSPORT OF LIGHT THROUGH THE WATER

### 2.1 The Relevant Physical Processes

A schematic illustration of the radiation transport relevant to a bathymetric lidar is given in Fig. 1. The laser pulse is incident on a region of the surface whose size depends on the altitude of the aircraft and the beam divergence. Each segment of the beam or ray is diverted by refraction at the surface this contributes to somewhat increased divergence beneath the surface.

Within the water the two principal mechanisms of interest are scattering and absorption. The path of a typical photon that might be received after reflection at the bottom is illustrated. It will be observed that the path involves a number of scattering events, and at each one of these events there is a certain probability of absorption. Thus the received photons have not only been scattered in an appropriate direction but also have avoided absorption within the transit path.

Some of the incident photons will be scattered back to the surface without reflection at the bottom; if these reach the receiver they contribute to the so-called volume backscattering. In a lidar system, the energy reflected from the bottom must be sufficiently large for it is to be detected in the presence of this volume backscattering.

In the Monte Carlo approach we model the transport of representative photons through a homogeneous water column to the bottom. A schematic diagram of the simulation geometry is given in Fig. 2. We consider photons incident on the surface at time $t=0$ in a direction making an angle $\psi$ with the nadir. The surface at the point of incidence is considered to be horizontal so that the nadir angle of transport immediately beneath the surface is given by Sne11's Law,

$$
\begin{equation*}
\sin \phi=\frac{\sin \psi}{\mu}, \tag{1}
\end{equation*}
$$

where $\mu$ is the refractive index of water (1.33). In this treatment all deviations of the incident ray arising from surface wave slopes have been neglected. The random pointing or 'beam steering" errors caused by surface waves must be treated separately as a depth measurement precision loss.

In treating the scattering events in the water, paths between successive scatterings are exponentially distributed with a constant mean free path. That is, we assume that the distance $L$ covered between scattering is distributed as

$$
\begin{equation*}
p(L) d L=\frac{1}{q} e^{-\frac{L}{q}} d L \tag{2}
\end{equation*}
$$

where $q$ is the mean free path.

Such a distribution is achieved by setting

$$
\begin{equation*}
\mathrm{L}=-\mathrm{q} \ln \rho, \tag{3}
\end{equation*}
$$

where $\rho$ is a rectangularly distributed random number in the interval ( 0,1 ).

Traditionally, the mean free path for radiation transport through water has been described through a parameter called the "narrow-beam attenuation coefficient" ( $\alpha$ ). The narrow-beam attenuation is comprised of two components, scattering and absorption, as illustrated in Fig. 3. If "s" is the scattering coefficient and "a" is the absorption coefficient, then

$$
\begin{equation*}
\alpha=a+s \tag{4}
\end{equation*}
$$

If a beam of intensity $I_{0}$ is incident on a column of water, then the amount that remains unscattered and aiso not absorbed after travelling a distance $L$ is $I_{0} \exp (-\alpha L)$. Thus the mean free path, $q$, is equal to $\alpha^{-1}$.

The vertical "optical depth" of the medium, defined as the number of mean free path lengths required to vertical$1 y$ traverse the medium to the bottom for a depth $D$, is $D / q$ which is equal to $\alpha D$.

The "albedo for single scattering," $\omega_{0}$, is defined as the average fraction of the incident energy at any scattering event that is not absorbed; i.e.,

$$
\begin{equation*}
\omega_{0}=\frac{\alpha-a}{\alpha}=\frac{s}{\alpha} \tag{5}
\end{equation*}
$$

For typical coastal waters $\omega_{0}$ is believed to range from about 0.55 to 0.9 . In the simulations, photons are not actually eliminated by absorption as they might be in the real world. Rather, we represent the behavior of a photon ensemble by retaining a photon weight (initially unity) and multiplying it by the single-scattering albedo, $\omega_{0}$, at each scattering
event. In this way we can conveniently accumulate results for several values of $\omega_{0}$ at the same time.

Photons are considered to change direction at all scattering events as illustrated in Fig. 4. The scattering angle $\theta$ from the incident direction is generated according to the "phase function", $P(\theta)$, which defines the probability that the photon will scatter into a unit solid angle between $\theta$ and $\theta+\mathrm{d} \theta$. Since the solid angle between $\theta$ and $\theta+\mathrm{d} \theta$ is $2 \pi \sin \theta d \theta$, the probability of occurence of $\theta$ in $\theta$ to $\theta+d \theta$ is

$$
\begin{equation*}
\mathrm{P}^{\prime}(\theta) \mathrm{d} \theta=2 \pi \sin \theta P(\theta) d \theta \text {. } \tag{6}
\end{equation*}
$$

Typical phase functions for water exhibit a very strong forward scattering effect (Petzold 1972) as will be discussed in Section 3.1. The phase functions increase by a factor of more than 1000 as the scattering angle diminishes from $10^{\circ}$ to $0.1^{\circ}$. The physical reason for this phenomenon appears to be the proximity of the refractive index of the scattering agent to that of the ambient water (Gordon 1974). (Note that if the refractive indices were identical there would be no scattering, and the phase function would be a delta function at zero degrees).

The value of each scattering angle, $\theta_{k}$, is generated by solving the equation

$$
\begin{equation*}
\int_{0}^{\theta} k p^{\prime}(\theta) d \theta=4 \pi \rho, \tag{7}
\end{equation*}
$$

where $\rho$ is a rectangularly distributed random number between 0 and 1. This equation is solved by linear
interpolation within a look-up table of the value of the integral as a function of $\theta_{k}$.

The parameters, $\alpha D, \omega_{0}$, and $P(\theta)$ are the "inherent" description of the transport medium characterics required for the simulation. The relationships between these parameters and the parameters governing the "apparent" properties of the medium have been discussed by Gordon, Brown, and Jacobs (1975). The most important parameter of the apparent properties is $K$, the so-called "diffuse oceanographic attenuation coefficient", which is defined as the fractional rate of decay of the downwelling flux (i.e., the sum of all radiation reaching a given depth) as the depth is increased. For small depths, $K$ depends on both the depth itself and the angle of incidence of the radiation at the surface; but for larger depths these dependences become very small. $K$ is properly measured at or corrected to nadir entry. The ratio, $K / \alpha$, is a monotonically decreasing function of $\omega_{0}$ which has a value of unity when $\omega_{0}$ is zero and which decreases towards zero as $\omega_{0}$ tends to unity. There is a small dependence on the phase function, but this is not significant for realistic coastal waters.

The lengths of the photon paths for the photons reaching the bottom are summed to allow an evaluation of the associated time delay. The minimum time of transit to the bottom is

$$
\begin{equation*}
\mathrm{t}_{\mathrm{w}}=\frac{\mathrm{D}}{\mathrm{c}_{\mathrm{w}}} \tag{8}
\end{equation*}
$$

where $c_{w}$ is the velocity of light in water. The "time delay" for paths of length $L_{i}$ is then computed as

$$
\begin{equation*}
\mathrm{t}_{\mathrm{D}}=\frac{1}{\mathrm{c}_{\mathrm{w}}}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~L}_{\mathrm{i}}-\mathrm{D}\right) \tag{9}
\end{equation*}
$$

By repeating this computation for a large number of downwelling photons we can compute the downwelling impulse response function $d\left(t_{D}\right)$ as a histogram representing the probability distribution of arrival times of incident photons at the bottom.

An important gain in the information content of the results arises from the realization that, for given values of $\alpha D$ and $\omega_{0}$, all temporal results scale linearly with the depth, D. This is illustrated in Fig. 5 where we show representative photon paths for two cases with the same $\alpha \mathrm{D}$ but with different values of $D$. The photon paths for the two cases are geometrically "similar" so that the fractional time delays ${ }_{\mathrm{t}}^{\mathrm{D}} / \mathrm{t}_{\mathrm{w}}$, are identical. Therefore the absolute time delays scale linearly with $D$, and one set of simulated results can be used to determine absolute results for all depths.

In order to increase the efficiency of the simulations further, we sample the times of first crossings of a number of intermediate levels on the way to the bottom. The intermediate levels are characterized by the appropriate values of $\alpha D$, and, since the medium is homogeneous, the value of $D$ in the simulation scales linearly with $\alpha \mathrm{D}$. Because of the above scaling law we are able to arbitrarily set to unity the depth $D_{\text {max }}$ corresponding to the largest value of $\alpha \mathrm{D}$, namely, $\alpha \mathrm{D}_{\text {max }}$, so that in the computations the valuc of $q$ is $\left(\alpha D_{\max }\right)^{-1}$.

The impulse response that is finally needed from the simulations is that for radiation returning to a distant receiver co-located with the source. Our early attempts to obtain this result were based on concepts of "virtual photon" sampling similar to those developed by Holland, Thomas and Pearce (1977). The basic idea in this approach is illustrated in Fig. 6. Each event (i.e., scattering or absortion) in the track of the real photon offers an opportunity for radiation to be directed towards the receiver, and if a photon were scattered in the correct direction it would have a finite probability of being appropriately refracted at the surface and entering the receiver. Thus at each scattering event we compute a receiver sample value by multiplying the residual photon weight by two factors:

1. the probability $P_{1}$ of scattering into unit solid angle in the direction required for refraction at the surface and into the receiver; and
2. the probability $P_{2}$ that the photon would survive the transit to the receiver without scattering or absorption.

Virtual photon sampling is of considerable value in many cases where there is a very low probability of actually receiving
or detecting an input photon. In this case a very large number of photon tracks might have to be simulated before a single photon would be sampled and, of course, a much longer simulation still would be required to generate a statistically meaningful sample.

In the case of laser bathymetry simulation, however, we experienced difficulty in computing a result that was reproducible when using different seeds for the random number generator. This problem was tracked to the fact that a small number of samples exhibited very large weights associated with very large values of the probability, $\mathrm{P}_{1}$. These situations arose when there was only a small deviation required in the path of the real photon to generate the virtual photon path. Since the phase function increases very rapidly for small angles, the few cases with small angle scattering could dominate the entire signal.

We attempted to alleviate this problem through the use of "importance" sampling (Hammersley and Handscomb 1965). In this technique, the photons reflected at the bottom are distributed in a region close to paths required for transit to the receiver, and appropriate renormalizing factors are applied. This did increase the information concerning those photons with very large weights but failed to provide a significant improvement in reproducibility. We were therefore forced to establish a less direct method of estimating the receiver response function -- one that does not involve the sampling of virtual photons.

With this in mind we developed a procedure based on a "reciprocity" principal (Chandrasekhar 1960) which states the statistical description of downwelling paths is identical
to that of the upwelling paths. This is not declaration that the downwelling and upwelling paths are the same, but rather that the simulated downelling photon tracks can be regarded as representative for both cases. Thus the computed impulse response $d\left(t_{D}\right)$ for downwelling transport forms the basis for the determination of the two way impulse response.

If the bottom reflection were regarded as isotropic, then reflection into a given solid angle in every direction would be equally likely. In this case we could estimate the receiver response function by regarding $d\left(t_{D}\right)$ to be the distribution function describing both downwelling and upwelling radiation. Very little data exists on the actual directional reflectivity of the ocean bottom, so we chose the traditional approach of assuming that the bottom is a Lambertian reflector; i.e., that the probability of reflection at a zenith angle $Z$ is proportional to cos $Z$. This type of reflection results in a uniformly bright appearance of the illuminated surface independent of the viewing angle in the absence of the turbid medium. The Lambertian type of reflection results in a modified upwelling distribution $u\left(t_{D}\right)$ compiled by multiplying the samples of $d\left(t_{D}\right)$ by cos $Z$ where $Z$, in this case, is the nadir angle of the photon arriving at the ocean floor. The sampled function $u\left(t_{D}\right)$, is considered to characterize the airborne receiver response for photons released from the bottom (all at time $t=0$ ). Just as for $d\left(t_{D}\right)$, the minimum time for any sample $u\left(t_{D}\right)$ is $t_{w}$ given by Eq. (8).

Finally, we compute the receiver response function $r(T)$ at a time $T$ following the earliest possible round trip return. We note that if this return arises from downwelling photons with a time delay $t_{1}$, then the value of $t_{2}$, the time delay required for the upwelling path, is $T-t_{1}$. Thus the value of $r(T)$ can be expressed by the integration of the product of $d\left(t_{1}\right)$ and $u\left(t_{2}\right)$ over all such cases:

$$
\begin{equation*}
\mathrm{r}(\mathrm{~T})=\int_{0}^{\mathrm{T}} \mathrm{~d}\left(\mathrm{t}_{1}\right) \mathrm{u}\left(\mathrm{~T}-\mathrm{t}_{1}\right) \mathrm{dt} \mathrm{t}_{1} . \tag{10}
\end{equation*}
$$

This is, of course, the convolution of $u$ over $d$. The functions $u$ and $d$ are actually constructed by discrete samples during an interval $\Delta \cdot t_{w}$ where $\Delta$ is a small fraction (typically 0.005), and $t_{w}$, as before, is the vertical transit time for unscattered photons. The function $r(t)$ is then constructed for discrete values of $T=n t_{w} \Delta$ (where $n$ is an integer) by the following digital convolution of $d$ and $u$ :

$$
\begin{equation*}
r(n)=\sum_{m=1}^{n} d(m) u(n-m+1), \tag{11}
\end{equation*}
$$

where $d(m)$ is the sample of $d$ collected such that

$$
\begin{equation*}
(m-1) t_{w} \Delta \leq t_{D}<m t_{w} \Delta \tag{12}
\end{equation*}
$$

and similarly for $u(m)$. The value of $r$ computed in this way has an associated time unit of $t_{w} \Delta$.

The act of convolving the functions $d$ and $u$ is an integration, and, as such, it has the effect of reducing the magnitude of statistical noise in the resulting function. It has been found that the function $r(T)$ is acceptably reproducible for simulations of as low as 10,000 photons when the program is rerun with different starting random numbers; this adds confidence to the results.

When the time increment $\Delta$ is set to 0.005 , the maximum time delay sampled is $0.25 t_{w}\left(=50 t_{w} \Delta\right)$. This means that only that part of the return occurring with a time delay (over the vertical two-way transit time) less than one quarter of the depth transit time is generated. This is normally the region within which the peak of the return power occurs, but, for large values of $\alpha D$ and large nadir angles, larger values of $\Delta$ must be used. Specifically, $\Delta=0.01$ was employed in these cases. The restriction of considering only the delay times up to $0.25 t_{w}$ or $0.50 t_{w}$ is important in limiting the simulation time requirements since any photons that were delayed by more than these amounts (compared to radiation travelling vertically downwards) can be eliminated from the simulations.

The depth measurement bias errors are estimated by applying fractional threshold detectors to the computed receiver response function, $r(T)$. The "reference time", $T_{R}$, for this computation is the time delay for radiation travelling unscattered (at the refraction angle $\phi$ ) to the bottom and then being reflected back along the same path. This time delay is

$$
\begin{equation*}
T_{R}=2 t_{w}(\sec \phi-1) \tag{13}
\end{equation*}
$$

For the nadir case, of course, $\phi$ is zero, so that $T_{R}$ is zero. Thus only positive (deep) errors in depth estimates can be contributed by propagation effects in this case. For the off-nadir cases, however, both positive and negative errors can occur. Negative (shallow) errors arise from a favoring of paths closer to vertical, since these are the ones for which absorption is less likely to occur. This is the socalled "undercutting" effect where bottom reflection occurs
predominately "beneath" the unscattered ray, and a significant amount of energy is returned before the reference delay time, $\mathrm{T}_{\mathrm{R}}$, as illustrated in Fig. 7.

Although a specific receiver field of view is not directly applied in the simulation, an effective field-ofview restriction is caused by the truncation of paths which have been judged to be excessively long (by the previously mentioned time increment criterion). This restriction applies only to photons which would have arrived in the trailing edge of the impulse response and in no way affects the leading edge or the peak power. Thus, the effective field of view is large but considerably less than unlimited, and probably represents a fairly realistic situation.

### 2.3 Interpretation of The Results

### 2.3.1 Energy and Peak Power Relationships

The simulations generate impulse response functions for the receiver as a function of the albedo for single scattering, $\omega_{0}$, and the vertical optical depth, $\alpha D$. All results are normalized such that

1. the input energy is unity,
2. the depth transit time is unity, and
3. the sampling interval is $\Delta$.

The reported peak power value $P_{r}$ is the sampled energy for a time interval that in the real world is $t_{w} \Delta$. Thus, if $r_{\text {max }}$ is the peak power in units of energy/second, we have

$$
\begin{equation*}
r_{\max }=\frac{\mathrm{P}_{\mathrm{r}}}{t_{w}{ }_{\mathrm{w}}} \tag{14}
\end{equation*}
$$

A separate set of simulations was performed for nadir entry with much larger values of $\Delta$ such that the time delay $50 \Delta$ includes virtually all of the return. This allows the estimation of the total return energy, $R$, where

$$
\begin{equation*}
R=\int_{0}^{\infty} r(T) d T \tag{15}
\end{equation*}
$$

for unit input energy.

In practice, of course, the input laser pulse is not an impulse but is distributed over time. Let $s(t)$ represent the laser output power as a function of time (in watts), and let $S$ (joules) be the total output energy of the pulse. Then

$$
\begin{equation*}
S=\int_{0}^{\infty} s(t) d t \tag{16}
\end{equation*}
$$

The true response of the receiver, $v(T)$, at time $T$ following the earliest possible round trip return is given by the convolution of $s(t)$ over $r(t)$, the impulse response function; i.e.,

$$
\begin{equation*}
v(T)=\int_{0}^{T} s(t) r(T-t) d t \tag{17}
\end{equation*}
$$

The total return energy is given by

$$
\begin{equation*}
V=\int_{0}^{\infty} v(T) d T \tag{18}
\end{equation*}
$$

Remembering that $r(t)=s(t)=0$ for all $t$ less than zero, it is easy to show by Eqs. (17) and (18) that

$$
\begin{equation*}
V=S R, \tag{19}
\end{equation*}
$$

which simply states that the total return energy is the total input pulse energy multiplied by the return energy per unit input given by Eq. (15).

We now consider two limiting cases:

1. The case where the impulse response function is narrow compared to the laser pulse. This will apply for small depths and small values of $\alpha \mathrm{D}$. In this case the laser pulse power $s(t)$ changes very little over the values of $t$ during which $r$ is significant, and equation (17) becomes

$$
\begin{equation*}
v(T)=s(T) \int_{0}^{T} r(T-t) d t \tag{20}
\end{equation*}
$$

Since $r(T-t)$ is non-zero only for small values of $t$, the upper limit of integration may be replaced by infinity giving

$$
\begin{equation*}
v(T)=R s(T) . \tag{21}
\end{equation*}
$$

The peak power of the return in this case is then

$$
\begin{equation*}
P_{S}=R s_{\max } \tag{22}
\end{equation*}
$$

where $s_{\text {max }}$ is the peak power of the source laser pulse.
2. The case where the impulse response function is broad compared to the laser pulse. This will apply for large depths and large values of $\alpha D$. By an argument similar to the above, Eq. (17)
in this case reduces to

$$
\begin{equation*}
v(T)=S r(T) . \tag{23}
\end{equation*}
$$

The peak power of the return in this case is

$$
\begin{equation*}
P_{L}=S r_{\max } . \tag{24}
\end{equation*}
$$

Using Eq. (14), we can rewrite Eq. (24) as

$$
\begin{equation*}
P_{L}=\frac{S P_{r}}{t_{w} \Delta} . \tag{25}
\end{equation*}
$$

The results in Eqs. (22) and (25) must be multiplied by a factor to account for surface transmission, receiver altitude, and receiver characteristics, but the same factor is applicable in both cases. We can therefore compare the results in Eqs. (22) and (25) directly.

Since $R$ is a function of $\alpha D$ but not of $D$ alone, the peak power $P_{S}$ for the short impulse response is independent of true depth. The peak power for the long impulse response function $P_{L}$, however, is inversely proportional to $t_{w}$, and therefore varies inversely with the true depth as well as with $\alpha \mathrm{D}$.

The ratio of the peak powers given in Eqs. (22) and (25) can be written as

$$
\begin{equation*}
\frac{P_{s}}{P_{L}}=t_{w} \Delta\left(\frac{P_{r}}{R}\right)^{-1}\left(\frac{s_{\max }}{s}\right), \tag{26}
\end{equation*}
$$

which demonstrates that the durations and shapes of the impulse response and the incident laser pulse have a significant role in affecting the peak receiver power and will impact the transition from case (1) to case (2). Equation (26) gives a ratio for the peak powers in the limiting cases.

### 2.3.2 Bias Estimation

We can gain approximate estimates of the potential biases by applying a linear fractional-threshold detector to the impulse responses. In this method we compute the $t i m e, t_{f}$, at which the impulse response rises through a given fraction, $f$, of the peak response. Since our simulation results are referenced to unit depth and unit velocity of light, we must convert to a specific depth in the real world by multiplying by $t_{w}$, the depth transit time. Thus we compute the time bias as

$$
\begin{equation*}
T_{B}=t_{w} \cdot t_{f}-T_{R} \tag{27}
\end{equation*}
$$

and, using Eq. (13), we have

$$
\begin{equation*}
\mathrm{T}_{\mathrm{B}}=\mathrm{t}_{\mathrm{w}}\left\{\mathrm{t}_{\mathrm{f}}-2(\sec \phi-1)\right\} \tag{28}
\end{equation*}
$$

In most of our presentations we have assumed a depth of 20 m , since this is the greatest depth at which the International Hydrographic Bureau (Special Publication No. 44, 1968) requires an accuracy of one foot $(30 \mathrm{~cm})$. In this case, $t_{w}$ is 88.7 ns .

Note that in the analysis of the impulse responses the fractional depth error is independent of the true depth. This is because the two-way transit time for unscattered light is $2 t_{w} \sec \phi$ so that the fractional error is given by

$$
\begin{equation*}
F(f) \equiv \frac{T_{B}}{2 t_{w} \sec \phi} \tag{29}
\end{equation*}
$$

which, by Eqs. (27) and (13), becomes

$$
\begin{equation*}
F(f)=\left(t_{f} / 2+1\right) \cos \phi-1 \tag{30}
\end{equation*}
$$

It is not possible to relate the bias computed by these formulae in a simple way to that associated with an input pulse of finite duration. For very short laser pulses the bias corrector will be accurate. For long input pulses, the bias may be larger or smaller than the value given -- with a greater potential for error in the corrector as the input pulse duration increases. A formal estimate of the bias associated with the pulse stretching phenomenon requires the convolution of typical source pulse shapes over the impulse response functions scaled to various depths. In order to assess the impact of system electronics on the bias correction, we must then apply a simulation of the circuitry action to each convolution and generate bias results as a function of both $\alpha D$ and D. This work is the subject of an on-going effort.

### 2.4 Program Validation

The computation of the impulse response function for radiative transport to and from a reflecting surface based on Monte Carlo simulation is, to the best of our knowledge, unique. There exists no other method by which the impulse response function can be detailed as it has been here. Our present results are in qualitative agreement with those of Thomas and Guenther (1979), but the earlier calculations were not designed to be as quantitative as in the present effort. The validation of the program is therefore possible only on the basis of ancillary results.

The Monte Carlo simulation program is comprised of a number of large modules extracted from applications in atmospheric physics (see, for example, Holland, Thomas, and Pearce 1977). The individual modules were extensively tested and validated by comparison of the simulation results with those computed by other methods. There is reason to believe, therefore, that validation of the module integration is the most important requirement for the hydrographic laser simulation applications, and not validation of the individual modules.

While there exists no comparable estimate of the impulse response functions, it has been shown in experimental and theoretical studies (Timofeyeva 1972; Gordon, Brown, and Jacobs 1975) that the downwelling flux decays approximately in exponential fashion as the product, $\alpha \mathrm{D}$, is increased.

This behaviour has been observed in our simulations, and, further, the coefficients of the exponential decay agree quantitatively with the experimental results of Timofeyeva (1972). This will be discussed in greater detail in Section 4.2. Thus, we can be confident that the program correctly estimates the downwelling fluxes for the specified inherent properties. This lends confidence to the module integration that has been performed and all the other results generated by the program.

### 3.0 DISCUSSION OF RESULTS

The presentation of results has been divided into four sections. Firstly, we shall give a list of the inherent water parameters over which results have been computed and discuss the outputs that are available. Tabular listings, graphic presentations, and archived computer files have been generated, and we shall summarize the contents and formats of the results.

Secondly, we present a section on results relating to penetration. This provides information relevant to the extrapolation of experimental data to estimate the limiting operating conditions of the system. Both total received energy and peak power curves are given, and we discuss the parameterization requirement and applicable time domains for both cases.

Thirdly, we have organized a section on impulse responses and bias sensitivities to illustrate the effects of changing various water and system parameters. The parameters of interest are:

1. The phase function, $P(\theta)$,
2. The nadir angle in air, $\psi$,
3. The vertical optical depth, $\alpha D$,
4. The albedo for single scattering, $\omega_{0}$, and
5. The value of the fractional threshold, f, for pulse location. In addition to these sensitivities, we have also investigated variations in the parameter, $K D$, (with $K$ and $D$ varying) where $K$ is the diffuse oceanographic attenuation coefficient.

Additionally, we discuss the behavior of the log-signal against log-time graphs for the leading edge of the return pulse.

The fourth results section deals with:

1. Nadir entry,
2. Detection based on the peak of the impulse response, and
3. A set of graphs likely to be valid for most practical cases.

### 3.1 The Cases Treated

Table 1 presents a list of the parameters employed as inputs to the simulations. We considered two phase functions designated "NAVY" or "clean" and "NOS" or "dirty". The volume scattering functions (VSFs) corresponding to these cases are plotted in Figs. 8 and 9 respectively. The associated phase functions can be computed by dividing the VSF by $\omega_{0}{ }^{\alpha}$. The values of $\omega_{0}$ and $\alpha$ appropriate to the two cases are listed on the plots along with other key parameters. $B$ is the probability of scattering in the backwards hemisphere, i.e., through an angle greater than $90^{\circ}$. The "slopes" given on the graphs are for a scattering angle of $0.1^{\circ}$. These slopes were used to estimate the VSF at $0.05^{\circ}$, and for smaller angles we assumed that each VSF was equal to the value at $0.05^{\circ}$. An assumption of this type is required to insure the integrability of the phase function for small angles. While this assumption may introduce some errors into the simulation due to the high value of the VSF at small angles, we believe that the phase functions we have used are reasonable representations of the experimentally available data. The mean cosine of the scattering angle is slightly higher for the NAVY phase function than for the NOS
phase function, and, as a result, we would expect more forward scattering and less beam spreading for the NAVY case.

TABLE 1
List of parameters over which results were computed.

1. Scattering phase functions, $P(\theta)$
a) "NAVY" or "clean" (See Figure 8)
b) "NOS" or "dirty" (See Figure 9)
2. Nadir angle of entry in air, $\psi$ (Degrees)
$0,15,25,35,45$
3. $\alpha D=$ vertical optical depth of water column (Dimension1ess)
$2,4,6,8,10,12,14,16$
4. $\quad \omega_{0}=$ albedo of single scattering $0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2$ (Dimension1ess)

At first sight the two phase functions appeared to be quite similar, but, on closer inspection, we found some significant quantitative differences. The cumulative scattering probabilities for the two cases are plotted in Fig. 10, and it can be seen that the NAVY phase function yields a higher scattering probability in the forward direction. There is a 38 percent probability for scattering through an angle less than one degree in the NAVY case while the corresponding figure for NOS is only 25 percent.

For each of the two phase functions we performed five simulation runs with nadir angles in air ranging from $0^{\circ}$ to $45^{\circ}$ for a total of ten runs.

In general, both $\alpha D$ and $\omega_{0}$ are larger for the more "turbid" or "dirty" water. Nevertheless, to insure comprehensive results sets for the two phase functions, we performed simulations over full sets of $\alpha D$ and $\omega_{0}$ values for the two cases. Eight values of both parameters were employed in each simulation run as listed in table 1 so that 64 sets of results were generated in each run.

The listed output includes the following for all cases:

1. The impulse response function for downwelling radiation reaching the bottom,
2. The impulse response function for upwelling radiation reflected from the bottom,
3. The convolution of functions (1) and (2) representing the response at the receiver, and
4. The spatial (radial and Cartesian) distribution of downwelling radiation at the bottom.

In addition to the listed output, a binary output file containing the receiver impulse response functions for all cases has been written onto disk storage. This file is organized according to the parameters in table 1 with the lower parameters being changed most frequently. Thus eight impulse response functions corresponding to the eight $\omega_{0}$ values
are written for each $\alpha D$, and a total of 640 impulse response functions exist in the data base.

To facilitate transfer of this results "archive" to the Tektronix 4051 for plotting, the data was translated into two ASCII files (one for each phase function). The format associated with a single impulse response function is given in Appendix A. Most of the results presented in this report were graphed from this file or related files. Appendix $B$ presents a complete set of all the computed bias errors as a percentage of the depth for a range of linear fractional thresholds; also reported are the risetimes in nanoseconds for $20-\mathrm{m}$ water.

### 3.2 Energy and Peak Power Results

In this section we begin to present relationships for the impulse response of the system for exhaustive combinations and wide ranges of the basic input parameters: optical depth ( $\alpha D$ ), single-scattering albedo $\left(\omega_{0}\right)$, phase function, and nadir angle. First we will restrict ourselves to the nadir and investigate the energy reaching the bottom per unit input energy, the energy reaching a distant receiver, and the peak power reaching a distant receiver. The "energy" results that we derive also describe the power for a steady state or non-pulsed experiment since they represent the integration over all times of the impulse response functions. Thus the downwelling energy reaching the bottom maybe interpreted as the "flux" reaching the bottom for unit power input of a steady state system. It must be emphasized, however, that the "peak power" results we report are for an impulse input to the water. Attenuation coefficients are derived, and two alternate formal descriptions of the peak power at a distant receiver are formulated. Effects of these relationships on penetration predictions are noted. Next, offnadir behavior is examined; and finally, the effect of the nonzero duration of the incident pulse is described.

The most elementary output from the simulation is the spatially integrated energy arriving at the bottom, i.e., the fractional number of incident photons reaching the bottom. Those not reaching the bottom are lost to either scattering or absorption. If one plots the log of the downwelling energy versus vertical optical depth (Figs. 11 and 12), it is seen that the results are effectively (but not perfectly) described by straight lines from the origin with slopes dependent on the single scattering albedo. (Note: the regions on the curves for joint high $\alpha D$ and low $\omega_{0}$ are dashed because the extremely small "signals" resulting from these circumstances produced unacceptably large statistical variances in the results. These could have been removed by running the simulation longer, but it was not deemed necessary because such small values of $\omega_{0}$ would never be found in coastal waters.)

If the slopes of the downwelling energy ( $\mathrm{E}_{\mathrm{B}}$ ) curves are denoted as $m\left(\omega_{0}\right)$, then

$$
\begin{equation*}
E_{B}=e^{-m\left(\omega_{0}\right) \alpha D} . \tag{31}
\end{equation*}
$$

Recalling that the downwelling energy can also be written as

$$
\begin{equation*}
E_{B}=e^{-K D} \tag{32}
\end{equation*}
$$

(the defining relationship for $K$ ), it is clear that the slopes are

$$
\begin{equation*}
m\left(\omega_{0}\right)=\frac{K}{\alpha}\left(\omega_{0}\right) \tag{33}
\end{equation*}
$$

Because the curves extrapolate very closely to the origin, the average slope and the instantaneous slope are very nearly equal at all $\alpha \mathrm{D}$, and $\frac{K}{\alpha}\left(\omega_{0}\right)$ is thus very nearly independent of $\alpha D$ as seen in Fig. 13. This permits us to plot $K / \alpha$ versus $\omega_{0}$ for the two phase functions as seen in Fig. 14. The phase function effect is seen to be not insignificant, but relatively small.

This is an extremely important relationship because it clearly demonstrates that the ratio of the two most commonly measured attenuation coefficients is determined solely by a third (not so well known and difficult to measure) parameter, the oft ignored single-scattering albedo. The relationship is also important because it provides the best opportunity for validation of the simulation. Timofeyeva (1972) derived $K / \alpha\left(\omega_{0}\right)$ experimentally for a number of scattering media. The curve plotted on Fig. 14 is for milk which is claimed to have scattering properties similar to those of seawater. The simulation results are seen to be in good quantitative agreement and demonstrate the correct trend with phase function (assuming that milk would have a somewhat "dirtier" phase function than our "NOS" water).

The pulse energy returned to a distant receiver ( R from Eq. (15)) was calculated by temporally integrating the impulse responses (which were determined by convolving the downwelling response with a slightly perturbed version of itself). The effect of the perturbation turned out to be quite small as noted by the fact that the plots for $R$ versus $\alpha D$ were nearly identical to the $E_{B}$ versus $\alpha D$ plots with $D$ replaced by $2 D$ to account for the round-trip distance. If the small differences are ignored, the $E_{B}$ versus $\alpha D$ curves can also be used for $R$ versus $\alpha D$ (with the scale squared) as has been done on the "inside" axes in Figs. 11 and 12; i.e.,

$$
\begin{equation*}
R \cong E_{B}^{2} \tag{34}
\end{equation*}
$$

For this case, one could define a "system" attenuation coefficient for received pulse energy $k_{e}$, from the relationship

$$
\begin{equation*}
R=e^{\frac{-2 k}{e^{\alpha}}}=e^{-2 k_{e}^{D}} \tag{35}
\end{equation*}
$$

It is clear, however, from Figs. 11 and 12 or from Eqs. (32), (34), and (35) that $\mathrm{k}_{\mathrm{e}}=\mathrm{K}$, and thus we can write

$$
\begin{equation*}
\mathrm{R}=\mathrm{e}^{-2 K D} \tag{36}
\end{equation*}
$$

This familiar expression has often been used in signal equations for describing the return "strength" for airborne lidar systems. We shall see shortly how this must be modified to take pulse stretching and power (rather than energy) detectors into consideration.

First, however, it is instructive to look at the spatial distribution of the pulse energy at the bottom as shown in Fig. 15. It can be seen that the distributions are skewed toward the aircraft due to energy undercutting the (unscattered) reference path (recall Fig. 7). This skewness is more pronounced for higher $\alpha D$ and for the NOS phase function. It is also evident that the physical distance by which significant energy is displaced from the unscattered ray is a large fraction of the water depth. This high1y scattered energy is reflected from the bottom at a location closer to the distant receiver and hence will arrive first and have a strong effect on the
early shape of the impulse response. This is the chief reason for the predominantly "shallow" depth measurement biases which will be noted in the next section.

Energy-based pulse location algorithms such as correlators or centroids are not appropriate for timing underwater light propagation because pulse stretching strongly affects the shape and duration of the pulses. Much of the return energy is not "useful" because it occurs in the elongated tail of the return pulse. Typical leading edge power detectors such as a fractional threshold are also affected but to a much lesser degree. It is important, therefore, to investigate the behavior of the peak power of the return pulses as a function of optical depth, single-scattering albedo, and phase function.

It is clear that peak power and pulse energy are proportional, i.e., obey the same functionalities, as long as the pulse shape remains unchanged. Pulse stretching removes that proportionality; for example, although the pulse may contain the same total energy, the fact that it is distributed over a longer time interval causes its maximum amplitude (peak power) to be reduced, Furthermore, for a fixed $\alpha D$, the absolute amount of stretching, i.e., the actual pulse length, is (from simple geometry) linearly proportional to the physical depth, D. For this reason, underwater propagation causes not only a loss of energy as a function of optical depth, but the associated pulse stretching causes a further loss of peak power with respect to the pulse energy which varies both as a function of the physical depth and the inherent optical parameters.

Relative peak power plots for the two phase functions at nadir entry are illustrated in Figs. 16 and 17 for constant physical depth, D. Several features are apparent if one compares these results with Figs. 11 and 12.

For high $\omega_{0}$ the semi-log plots tend to be curved upwards; their slopes are initially steeper than for the corresponding received pulse energy curves, but at high $\alpha \mathrm{D}$ the corresponding slopes became similar. The explanation for this behavior can be determined by studying the corresponding impulse response functions. At low $\alpha D$ the pulse begins to stretch significantly with increasing $\alpha D$, but at higher $\alpha D$ the pulse shape "saturates" and does not continue to increase stretching. Conceptually one can understand this in terms of the more highly scattered paths (those which would have contributed to still more stretching) having a much higher probability of absorption at the higher optical depths. For lower $\omega_{0}$ (some unrealistically low for coastal waters but included for sake of completeness) the peak power curves are relatively straight and do not differ greatly from the received energy curves because the relatively high probability of absorption for longer paths effectively curtails pulse stretching throughout the range of optical depths.

Because most of the semi-log plots of peak power vs optical depth for constant physical depth are relatively straight, one can again choose to describe the behavior as exponential and define an average system attenuation coefficient, $k_{p}$, for received power $\left(P_{r}\right)$, from the slopes as follows:

$$
\begin{equation*}
\left.P_{r}\right|_{\underset{D=\text { const }}{\alpha e^{-2 k_{p}}} \frac{\alpha D}{\alpha}=e^{-2 k_{p} D} .} \tag{37}
\end{equation*}
$$

Because of the previously mentioned added linear dependence on absolute depth, the peak power can then be written as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}^{\propto} \frac{\mathrm{e}^{-2 k_{p} D}}{\mathrm{D}} \tag{38}
\end{equation*}
$$

To the extent that several of the high $\omega_{0}$ plots are slightly curved, the average power attenuation coefficient to a given optical depth will be a weak function of optical depth as seen in Fig. 18. It can be seen by comparing Figs. 16 and 17 that the sensitivity of the received power curves to phase function is somewhat stronger than was the case for received energy.

This is further illustrated in Fig. 18 where the derived $k_{p} / \alpha$ values are plotted as a function of $\alpha D$ and parameterized on $\omega_{0}$ for both NAVY and NOS cases separately. Since the aD dependence is small, we can again select a representative value (say $\alpha \mathrm{D}=10$ ) and plot $\mathrm{k}_{\mathrm{p}} / \alpha$ vs $\omega_{0}$ as in Fig. 19 where the earlier results for $k_{e} / \alpha$ are also shown for comparison.

It is clear from Fig. 19 that the system attenuation coefficient for power is significantly larger than that for energy -particularly at high $\omega_{0}$. This means simply that the "signal" predicted by Eq. (37) will drop off more quickly with increasing depth than one would predict from Eq. (36), and that this effect is worse for the "dirtier" water implied by high $\omega_{0}$. The effect of phase function is seen to be small but not inconsequential.

Combining the information contained in Figs. 13 and 18 for $K / \alpha$ and $k_{p} / \alpha$ versus $\alpha D$, we have produced the results for $k_{p} / K$ versus $\alpha D^{p}$ for the impulse response as seen in Fig. 20. This ratio clearly demonstrates the extent to which the power attenuation coefficient can exceed the diffuse oceanographic attenuation coefficient. Note that, depending on the inherent water optical parameters, the ratio ranges between 1.0 and 3.0 (and could be even higher if $\omega_{0}$ is permitted to range as high as 0.95 for very dirty "Chesapeake Bay-type" water).

Equation (38) can be rewritten as

$$
\begin{equation*}
P_{r} \propto \frac{e^{-2 \frac{k_{p}}{K} K D}}{D} \tag{39}
\end{equation*}
$$

to emphasize that this ratio enters directly into the exponent and will have a very dramatic effect on penetration. The effect of $\omega_{0}$ in the 0.7 to 0.9 range is very strong; and since its value is generally unknown in the field, a large variance in operational penetration depths for a given laser power can be expected for water masses with different scattering properties.

To emphasize the effect of the physical depth term in the denominator on increasing effective attenuation, one can invoke the identity $1 / D \equiv e^{-\ell n} D$ and rewrite Eq. (39) as

$$
\begin{equation*}
P_{r} \propto e^{-2 \frac{k_{p}}{K}} K D+\ell n D \tag{40}
\end{equation*}
$$

This highlights the fact that there are two loss mechanisms not included in Eq. (36). For a fixed loss term, it can be seen that the so-called extinction coefficient ( $K D_{\max }$ ) is not a constant at all, but will depend on the physical extinction depth due to the $\ell n D$ term.

It is important to recognize that this result is for the impulse response alone and will require some modification when dealing with finite incident pulses (see section 2.3.1).

These impulse response results are to be considered as a bounding (worst) case; the other extreme is that of a very wide incident pulse for which the impulse response remains
significantly smaller, effectively no pulse stretching occurs, and $k_{p} / K$ thus remains near unity. This was the case for the NADC test flights with a wide (15ns) pulse width and explains why the effect was not discovered at that time.

A practical bathymetry system will experience a "transition" region between these two extremes. The exact location of the transition region in terms of optical depth depends both on the incident laser pulse width and on the physical depth. Pulse stretching and the associated loss of power compared to energy will not be evident until the duration of the impulse response becomes significant compared to the width of the incident pulse. This will begin to occur as both the physical depth and the optical depth increase. At large physical and/or optical depths, the impulse response will become broad, and the actual loss curve will tend toward the impulse response loss curves. The ratio of peak powers for long and short laser pulses is expressed in Eq. (26).

In conclusion, it is important to note that for a given system utilizing a power detection technique, "penetration" does not depend simply on some magic "extinction" coefficient (such as $K D$ ) but rather on $\alpha D, \omega_{0}, D$, and the incident pulse width.

It is generally helpful to describe the results derived from simulations in formal analytic terms. The $k_{p} / K$ curves parameterized on $\omega_{0}$ in Fig. 20 demonstrate basic linear behavior and fair independence on phase function. In order to determine expressions for them in the form

$$
\begin{equation*}
\frac{k_{p}}{\mathrm{~K}}\left(\omega_{0}\right)=m\left(\omega_{0}\right) \alpha D+b\left(\omega_{0}\right) \tag{41}
\end{equation*}
$$

we need only determine their slopes (m) and intercepts (b). These have been found to be quite linear with the scattering to absorption ratio (s/a) as seen in Fig. 21. (Note that $\left.s / a \equiv \omega_{0} /\left(1-\omega_{0}\right).\right) \quad$ By combining the descriptions for $m\left(\omega_{0}\right)$ and $b\left(\omega_{0}\right)$ from Fig. 21 with Eq. (41) we arrive at the expression

$$
\begin{equation*}
\frac{k_{p}}{\mathrm{~K}}=10^{-3}\left[6.03-8.93\left(\frac{\omega_{0}}{1-\omega_{0}}\right)\right] \alpha \mathrm{D}+0.23\left(\frac{\omega_{0}}{1-\omega_{0}}\right)+1.02 \tag{42}
\end{equation*}
$$

for $k_{p} / K$ at nadir entry. Perturbations due to off-nadir entry will be presented shortly.

The power loss equation derived by combining Eqs. (40) and (42) is fairly tedious. It is instructive to look for an alternate and perhaps simpler formulation.

An alternate presentation of the information included in Figs. 16 and 17 is seen in Fig. 22, where the $10 g$ of return power is seen to vary linearly with $\omega_{0}$ over the range from 0.2 to 0.9 in a manner which depends on $\alpha \mathrm{D}$. The effect of the phase function is significant but smaller than for $\alpha D$ and $\omega_{0}$. Because none of the plots are curved as they are in the earlier representation, the formal description should be simpler. One can split the difference between phase functions and write

$$
\begin{equation*}
P_{r} \propto e^{m(\alpha D) \omega_{0}+b(\alpha D)-\ell n D} \tag{43}
\end{equation*}
$$

Determining the slopes and intercepts (which in this case are not linear with $\alpha$ D) leads to the expression

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}{ }^{\alpha} \exp \left\{-2.21 \alpha \mathrm{D}+0.92 \omega_{0}(\alpha \mathrm{D})^{1.22+1.10-\ell \mathrm{nD}}\right\} \tag{44}
\end{equation*}
$$

which is good to within a factor of about 2. Equation (44) is an equivalent expression to Eqs. (40) and (42), and, given the numerical relationship between $K / \alpha$ and $\omega_{0}$, will produce identical results.

The effect of an off-nadir entry angle on the bottom energy and on energy returned to a distant receiver are depicted in Fig. 23 for the "NOS" phase function. At low optical depths the loss per unit vertical optical depth is greater at a $45^{\circ}$ nadir angle due simply to the geometrical increase in the physical path length to a given vertical depth (sec $\phi$ where $\phi$ is the surface refracted water nadir angle). As the beam spreading increases with increasing depth, longer paths diverted from the central "core" are absorbed, and the radiation tends to a cone. The center of this cone tends toward the vertical with increasing depth because that is the shortest distance to the bottom and hence has less loss. (This effect is seen by scuba divers who note that regardless of the solar angle, the sunlight appears to come from directly overhead in all but the shallowest water.)

This behavior is illustrated in Fig. 24 where the mean secant of photon path angles from vertical is plotted as a function of $\alpha D$. Note that for large optical depths, the distributions become quite similar.

Off-nadir power curves are shown in Figs. 25 and 26 for the two phase functions. Here again the initial loss is greater
than at nadir, but then the incremental loss (slope) reduces to that for the nadir case as the vertical cone of energy is established.

The magnitudes of the off-nadir effects are less than the $\omega_{0}$ effects, and no formal expression will be derived. Figures 25 and 26 can be used, if necessary, to supply corrections to the nadir results in Eqs. (42) or (44).
3.3 Impulse Response and Bias Sensitivity Studies

We have grouped sets of impulse response functions and composite bias plots for linear fractional thresholds to illustrate the effects of the input parameters over a wide range of possible operating conditions.

It must be emphasized that these results for the biases cannot be used directly to adjust experimental results for two reasons:

1. The finite duration of the source pulse is not considered, and
2. The impact of the receiver electronics is omitted.

Nevertheless, the impulse response functions derived form the basis for a formal correction estimate, and the bias estimates give an idea of the magnitude of the problem in the practical operating environment.

Figures 27 and 28 present a comparison of impulse responses for a vertical optical depth, $\alpha \mathrm{D}$, of 8 and a singlescattering albedo, $\omega_{0}$, of 0.8 . The time base is for a depth of

20 m ; for other depths the time scales linearly with the depth. Results for four nadir angles are shown: namely, $0^{\circ}, 15^{\circ}, 25^{\circ}$ and $35^{\circ}$. The time, zero, always corresponds to the earliest possible return from the bottom, i.e., to radiation that completes both its downward and upward transport in the water in the vertical direction. The "reference" time for the unscattered ray as defined by Eq. (13) is marked by the vertical line labeled 'REF', and the maximum or peak location if labeled ' $\mathrm{P}^{\prime}$.

The results for the NAVY phase function were compiled with 50,000 input photons while only 10,000 photons were simulated for the NOS phase function as a cost-saving measure. The errors in the impluse response functions can be gauged from the ripple in the plots. It is apparent that the noise is greater for the NOS phase function, and this, of course, relates to the smaller number of input photons. It was felt, however, that manual smoothing could be accomplished readily for these cases, and, even without any smoothing, acceptable accuracy in the bias estimates is obtained. In general, the variances in the results increase with increasing $\alpha D$ and decreasing $\omega_{0}$. Since the NOS phase function is attributed to "dirty" water, the associated value of $\omega_{0}$ will be larger in practice, and this reduces interest in the worst case of large $\alpha D$ and small $\omega_{0}$. Thus the more limited simulated was considered acceptable for the NOS case.

The leading edges of the impulse responses are not very sensitive to the phase function over any of the conditions considered. Some variation in the location of the peak signal is observed, with a tendency towards a greater delay for the NOS case. The trailing edges or tails of the impulse responses tend to be somewhat broader for the NOS phase function.

The insensitivity of the leading edge to the phase function leads to similar bias curves for the two cases as illustrated in Fig. 29. The results given are the biases in centimeters, at a depth of 20 m , for linear fractional thresholds of 50 and 10 percent and four nadir angles. Negative biases imply an underestimate of depth. The upper graphs were all obtained for an $\omega_{0}$ value of 0.8 , and it can be seen that the separation of the curves for the two phase functions are reasonably small except at large optical depths where they grow as large as 15 cm in certain cases. For the $10 \%$ threshold the shallow bias magnitudes tend to saturate when $\alpha D$ reaches about 6. The biases for the NAVY case continue to increase slightly, while for the NOS phase function they reach a maximum at an $\alpha \mathrm{D}$ of about 10 and then decrease slightly with increasing optical depth. For the $50 \%$ threshold, the results are qualitatively similar for nadir angles of $25^{\circ}$ and above, but below $25^{\circ}$ there is a pronounced phase function effect with the NOS function producing a deep bias for $\alpha \mathrm{D}$ greater than 10 or 12 .

The lower graphs in Fig. 29 compare biases for values of $\omega_{0}$ that may be more likely in practice, namely 0.6 for NAVY and 0.8 for NOS. The curves numbered 5 thru 8 are identical in the upper and lower plots. The separations of the NAVY and NOS cases are more pronounced in the lower graphs and exhibit differences as large as 20 cm .

For nadir angles of $0^{\circ}$ and $15^{\circ}$, the magnitudes of the biases are less than 30 cm for practical operating conditions, but there would be some advantage in applying a small correction. For nadir angles of $25^{\circ}$ and more, the biases exceed 30 cm , and in this case, correction would be mandatory. In general, however, for any given values of $\alpha D$ we see that the error in the prediction arising from uncertainty in the phase function and single-scattering albedo is no greater than 20 cm .

Figures 30 and 31 illustrate the effect of the vertical optical depth, $\alpha D$, on the impulse response function. The results shown are for $\alpha D$ values of $4,8,12$, and 16 , a value
of $\omega_{0}$ of 0.8 , and a nadir angle in air of $25^{\circ}$. Figure 30 is for the NAVY phase function while Fig. 31 is for NOS. It is clear that while for $\alpha D=4$ the impulse response is quite narrow and reasonably symmetric in its central portion, the width increases with increasing $\alpha \mathrm{D}$ together with an increasingly pronounced tail. There is a tendency for the peak of the impulse response to be delayed beyond the reference time for large values of $\alpha D$, particularly in the case of the NOS phase function.

Figures 32,33 , and 34 are designed to show the effect of changing the nadir angle. Figures 32 and 33 display impulse response functions for the five nadir angles considered and for values of $\alpha D$ of 8 and $\omega_{0}$ of 0.8 . The peak of the response tracked the reference time quite well, but the widths of the response increased as the nadir angle increased. Note the scale change on the abscissa when going from $25^{\circ}$ to $35^{\circ}$ nadir angle.) Figure 34 shows the computed biases for linear fractional thresholds of $1,10,50$, and 100 percent of the peak as a function of $\alpha D$ with $\omega_{0}$ fixed at 0.8 . In all cases the underestimate in depth increases with increasing nadir angle and decreases with an increasing fractional threshold. As before, the biases shown are not very sensitive to the phase function.

An important observation is that, for small fractional thresholds, there is a tendency for the curves to reach a saturation value when the optical depth reaches 6 or 8 . Variations in biases for larger values of $\alpha \mathrm{D}$ are very small. This fact may be a good basis for depth corrections in turbid waters since a precise estimate of the narrow-beam attenuation coefficient would not be required. Nevertheless, a critical review of the impact of the characteristics of the laser pulse and the system electronics is necessary before a correction algorithm can be finalized.

Figures 35 and 36 indicate the importance of the singlescattering albedo, $\omega_{0}$, in affecting the impulse response function. Results are shown for both phase functions at a nadir angle of $25^{\circ}$, an $\alpha D$ value of 8 , and for ranges of values of $\omega_{0}$ appropriate to the two phase functions. In general, the tails of the response functions were much more strongly influenced than the leading edges, but in both cases the width of the response function increased with increasing $\omega_{0}$.

Figures 37,38 , and 39 present more detailed information on the variability of the leading edge of the impulse response as $\omega_{0}$ changes. Computed biases at depths of 20 m are plotted as a function of $\alpha D$ for practical ranges of $\omega_{0}$ for both phase functions. For a linear fractional threshold of $10 \%$ of the peak, the range of the corrections for a given value of $\alpha D$ was generally less than 30 cm . Depths estimated from the peak of the impulse response were much more variable, however, and, for all nadir angles, the range of biases for $\alpha D$ values greater than about 10 was greater than 30 cm .

The impact of the selected value of the linear fractional threshold, f, is detailed in Figs. 40 and 41 where bias errors for a depth of 20 m are plotted as functions of $\alpha \mathrm{D}$ for a value of $\omega_{0}$ of 0.8 . When $f$ is $10 \%$ or less, the biases reach a constant value, independent of phase function, at an $\alpha \mathrm{D}$ of 6 or less. For larger values of $f$, however, there is a tendency for the underestimate in depth to become smaller for large values of $\alpha D$ (or for the overestimate to increase). Here the bias errors for the two phase functions differ; the NOS phase function generally causes a greater overestimate in depth for large values of $\alpha D$.

The bias errors at a 20 m depth for a full range of nadir angles are plotted in Fig. 42 as a function of threshold fraction for an $\alpha D$ of 10 and an $\omega_{0}$ of 0.8 . It is apparent that if one considers only the magnitude of the bias, peak detection provides the optimum pulse location algorithm. It will be seen in section 3.4 , however, that the low bias benefits of peak detection are counteracted by an insurmountable random noise problem caused by detection at a low slope region. The next best choices are middle or high fractions such as $50 \%$ or $80 \%$. Low thresholds lead to increasingly large biases, particularly below $10 \%$ where the errors grow very rapidly.

We had considered the potential use of the product, KD, (where $K$ is the diffuse oceanographic attenuation coefficient) as a predictor for two purposes:

1. to estimate receiver energy and perhaps power; and
2. to parameterize the appropriate bias correction.

Interest in this parameter is driven by our belief that $K$ can be estimated by an appropriate analysis of the volume backscattering return, i.e., of radiation not reflected at the bottom, but rather by the scatterers in the water. We have seen in the preceding section that the $K D$ product alone does not adequately describe the loss of peak power with depth. That it is also inadequate for bias prediction will now be demonstrated.

We are able to compute the ratio, $\frac{K}{\alpha}$, from our simulation results. This ratio is unity when $\omega_{0}$ is 0 and always decreases when $\omega_{0}$ increases. This behavior leads to a prediction that the parameter, $K D$, is not adequate, on its own, for computing the bias. Suppose, for example, that we have a bias result for a specified value of $K D$, and wish to investigate the bias change as $K D$ is increased. The value of $K D$ can be increased by increasing $\alpha D$-- in which case the width of the impulse response generally increases -- or, alternately, we can increase $K D$ by reducing the value of $\omega_{0}$-- in which case the width of the impulse response decreases. It follows that the width of the impulse response cannot be predicted unambiguously from a knowledge of $K$ or $K D$ alone. This conclusion is borne out by the following simulation results.

Figures 43 and 44 present impulse response functions for four different combinations of $\alpha D$ and $\omega_{0}$ for which $K D=3$, and Fig. 45 presents computed biases with these differing conditions corresponding to $K D=3$ represented as black dots. It is apparent that a wide range of impulse response widths and hence biases can result from the condition cited. It is of particular importance that the results for single scattering albedos of 0.8 and 0.9 should be so different from each other since these are conditions that may well be appropriate for coastal waters loaded with suspended particulates.

Further analysis of the impulse response functions and their implications could be aided by the development of a suitable functional description of the leading edge characteristics. In Figs. 46 thru 49 we have plotted the impulse responses on log-signals vs. long-time scales. In Figs. 46 and 47 we compare plots at a nadir angle of $15^{\circ}$, an albedo of single scattering of 0.8 , and $\alpha \mathrm{D}$ values of $4,8,12$, and 16 . Figure 46 is for the NAVY phase function while Fig. 47 is for the NOS case. The curves all exhibit nearly linear sections with gradients between 3 and 4 , which rise to substantial fractions of
the total peak height. Thus, a power-law behavior for the leading edge of the form $\mathrm{t}^{\mathrm{p}}$ is indicated (where t is the time since the earliest possible return and $p$ is a constant in the range from 3 and 4). Figures 48 and 49 are for an $\alpha D$ value of 10 and an $\omega_{0}$ value of 0.8 with four different nadir angles. In general, the linear sections appear with the slope normally in the range from 3 to 5.

The plots presented here are all for off-nadir operation. When operating at the nadir and small values of $\alpha \mathrm{D}$, the peak of the impulse response occurs very early, often in the first sampling bin. In this case the rise to the peak cannot be meaningfully characterized from our results. For large values of both $\alpha D$ and $\omega_{0}$, a significant delay in the peak is observed, but it appears that the power law appropriate to this case is different from that for the other cases. Sometimes a linear behavior seems to apply, but it may be that the power law description is not the best.

From the impulse response functions, "full" risetimes (from $1 \%$ to $100 \%$ of peak height) have been calculated for the two phase functions and are presented in Fig. 50 as a function of nadir angle for $D=20 \mathrm{~m}, \alpha \mathrm{D}=10$, and $\omega_{0}=0.8$.

These risetimes, which scale linearly with physical depth, can be seen to increase sharply for nadir angles beyond about $20^{\circ}$. This is detrimental to performance because larger risetimes cause larger random pulse location error (loss of precision). If the impulse response functions are convolved with an incident laser pulse of fixed duration, the resultant system response "full" risetime will be nearly equal to the sum of the two risetimes. Thus, as seen in Fig. 50, the system response risetime for a 7 ns incident pulse will be 7 ns greater than for the impulse response. For small nadir angles it can be seen that the phase function plays a relatively significant role in the duration of the risetime, while for large nadir angles the effect is quite small.

### 3.4 Special Cases

We have organized some graphs to treat certain conditions of particular interest:

1. Operations at the nadir,
2. The use of the signal peak for detection, and
3. Parameters most likely to be valid for reasonable operational conditions.

Figures 51 and 52 present impulse response functions for nadir operations. For values of $\alpha \mathrm{D}$ up to and including 8, the peak of the impulse response function normally occurs in the first sampling bin. The tail of the impulse response is initially steep but tends to an exponential form at large times. At values of $\alpha D$ larger than 8 , the peak in the impulse response function is delayed, particularly for large values of $\omega_{0}$. The portion of the tail that can be discerned from the generated data in these cases appears to be approximately linear.

Figure 53 presents the computed depth bias at nadir for $20-\mathrm{m}$ water. As pointed out previously, only overestimates in depth are possible. Significant biases occur only for large values of the linear fractional threshold, with no large error being observed for thresholds of $10 \%$ or less or a value of $\alpha D$ of 8 or less.

Bias errors scaled to $20-m$ water for detections based on the peak of the impulse response function are presented in Fig. 54. The bias generally reaches 30 cm or more for $\alpha D$ values greater than about 8 . For large values of $\alpha D$, the bias magnitude generally increases with $\alpha D$, with the
overestimate in depth becoming smaller as the nadir angle increases, and with the depth being underestimated when the nadir angle reaches $45^{\circ}$. The most serious errors occur for the NOS phase function and an $\omega_{0}$ value of 0.9 - conditions that might be appropriate for waters with substantial loading of suspended inorganic solids. The estimates of bias for peak detectors are seen to have a large variance in the simulations, particularly for larger value of $\alpha D, \omega_{0}$, and nadir angle. These arise from the flatness of the peak of the impulse response and will also occur in the analysis of field data. Thus, even if peak detectors have a small associated bias, their use cannot be recommended because of the generation of large random errors. This effect is discussed in detail in a report on a Monte Carlo "Pulse Location Estimation" simulation (Guenther and Thomas, 1981).

Figures 55 through 57 present results that might well be appropriate for "typica1" operating conditions: namely, $\omega_{0}$ values from 0.5 to 0.8 for the NAVY phase function and from 0.8 to 0.9 for the NOS phase function. We have concentrated on nadir angles of $0^{\circ}, 15^{\circ}$, and $25^{\circ}$ because biases for larger angles appear to be unacceptably large even after "correction". Figure 55 presents impulse response functions for the NAVY phase function at an $\alpha D$ of 8 and for the NOS phase function at an $\alpha D$ of 12 . The results for the NOS case show a significant delay in the peak and a very prolonged tail. The impulse responses for the NAVY phase function are generally more peaked and exhibit shorter tails.

Figures 56 and 57 present biases computed using 10 and 50 percent linear fractional threshold detectors. For $\alpha \mathrm{D}$ values below 10 , the NAVY and NOS phase functions yield very similar results. For greater $\alpha D$, the $10 \%$ threshold results are fairly similar, but at a $50 \%$ threshold the NOS results turn up more sharply - particularly for high $\omega_{0}$. At high $\alpha D$, shallow biases
caused by undercutting for the NAVY case tend to saturate, while for NOS water they tend to reach a maximum at an $\alpha D$ of about 8 and then increase (toward the "deep" direction) -sometimes rapidly. For small nadir angles ( $<15^{\circ}$ ) the high $\alpha \mathrm{D}$ biases become deep very quickly due to dominance of multiple scattering over geometric "undercutting".

The magnitudes of the errors are seen to depend strongly on the nadir angle and threshold fraction. The goal is to prevent the bias errors from becoming large enough that correctors requiring knowledge of the water optical properties would have to be invoked. In order to minimize the absolute magnitude of the bias errors, one should seriously consider selecting threshold fractions as a function of the nadir angle (including roll/ pitch). For example, at a $15^{\circ}$ nadir angle a $10 \%$ threshold produces smaller biases while at $25^{\circ}$ the $50 \%$ threshold is superior. This procedure could easily be accomplished in a digital system with a simple algorithm during post-flight data processing.

Perhaps the most important results which can be displayed are in Fig. 58 which indicates that prevention is more effective than cure. For a $15^{\circ}$ nadir angle the maximum error is -18 cm at a $20-\mathrm{m}$ depth using a $10 \%$ threshold. One can simply apply an ad hoc fractional bias corrector of $-0.45 \%$ ( 9 cm per 20 m ) and never err by more than $\pm 9 \mathrm{~cm}$ for $\alpha D^{\prime} \mathrm{s}$ from 0 to beyond 16. For a $25^{\circ}$ nadir angle the maximum error is 35 cm at an $\alpha D$ of 16 . The bias error at high $\alpha D^{\prime} s$ is strongly dependent on the water optical properties. Several approaches are possible depending on the maximum error magnitude permitted. If a $\pm 17 \mathrm{~cm}$ bias error is acceptable, an ad hoc fractional bias of $-0.85 \%$ could be arbitrarily imposed for all measurements. If greater accuracy is desired, some rough estimates of the optical properties could be made. The simplest solution would be to estimate K from the slope of the volume backscatter and, using the depth estimate, compute $K D$. Using an ad hoc value of 0.8
for $\omega_{0}$ then leads to $\alpha D \simeq 3.3 \mathrm{KD}$, and this estimate of $\alpha \mathrm{D}$ could then be used with Fig. 58 to provide a bias estimate which should be good to 1 ess than $\pm 0.50 \%( \pm 10 \mathrm{~cm} / 20 \mathrm{~m}$ depth). Section 4.0 contains further discussion on determination of the input parameters for the bias model.

It must be remembered that the results presented here have been for the impulse responses. They will have to be verified for the full system responses (i.e., after convolution with a finite input pulse), but they are certainly encouraging and indicate that careful selection of design, operational, and data processing parameters can probably limit propagationinduced bias errors to an acceptable level within the error budget without requiring a sophisticated analysis of backscatter or pulse shapes.
4.0 PRACTICAL REQUIREMENTS FOR BIAS CORRECTION

It has been emphasized that the results discussed in the previous section are only the first step in the process of computing the bias correction for operational practice. The results for the impulse response functions have been computed for specified inherent water parameters, $\alpha D$ and $\omega_{0}$, and the first part of this section describes a general correction procedure for circumstances where these parameters are known. The second part of the section discusses the most promising approaches to actually calculating these inherent parameters from airborne field data, and the third section considers additional possible lines of attack should these methods not prove usable. This information is presented for the sake of completeness and for operations not constrained as described in the previous section.
4.1 Computation of The Bias For Known Inherent Parameters

The specific steps required to estimate the relevant bias from the parameters, $\alpha D$ and $\omega_{0}$, given the phase function, the nadir angle, and the temporal profile of the source pulse are as follow:

1. Select the appropriate impulse response function from the existing archive by interpolating between the relevant tables.
2. Scale the impulse response function to the depth, $D$, using the uncorrected depth measurement as a first guess.
3. Perform a convolution of the scaled impulse response function over the source pulse profile to obtain an estimate of the profile of the received signal; and
4. Apply an algorithm that dup1icates the impact of the system electronics to determine the depth estimated by the system. The bias is then the difference between this estimate and the assumed depth, D.

If the depth correction is large, steps (2), (3) and (4) might have to be repeated iteratively, with increasingly accurate estimates of the depth being inserted in step (2). The fractional depth error without corrective iteration will be of the order of the square of the fractional bias and is generally sma11.

The procedure outlined above is too laborious for real-time application. Therefore, a set of tables is currently under construction for use by direct access in look-up fashion. The tables are specific to $D, \alpha D, \omega_{0}$, the phase function, the assumed source pulse profile, and the system electronics. A change in any one parameter will affect the bias to be applied, and separate tables must be generated for any significant change in the source profile or system electronics.

### 4.2 Estimation of the Inherent Parameters

We have reviewed the data of Petzold (1972) to determine relationships which may be helpful in quantifying the parameters, $\alpha D$ and $\omega_{0}$, of the water column. There is no easy method by which these can be computed directly from the return signal, and we have been forced to review indirect methods. The parameter that appears likely to be obtained from the log-slope of the volume backscattering is $K$, the diffuse oceanographic attenuation coefficient. Additionally, the absolute magnitude of the volume backscattering signal is proportional to $\sigma(\pi)$, the volume scattering function at $180^{\circ}$, and there is a chance that in a radiometrically calibrated system, $\sigma(\pi)$ can be independently estimated. Our investigation has therefore concentrated on the use of $K$ and $\sigma(\pi)$ as inputs for predictions of the inherent properties.

From K we can easily obtain $K D$, but, as we have seen, this alone is not adequate for bias estimation. The singlescatter albedo, $\omega_{0}$, is the key to the problem. In addition to being one of the two required parameters, it provides the link whereby $\alpha$ (hence $\alpha D$ ) can be obtained from $K$ (or KD) through the known $K / \alpha$ versus $\omega_{0}$ relationship (Fig. 14).

Based on the Petzold results, it appears that while there is no simple, single-valued relationship between $\sigma(\pi)$ and $\omega_{0}$, there is a strong one with low variance between $\sigma(\pi) / K$ and $\omega_{0}$ as seen in Fig. 59. Thus, the value of $\omega_{0}$ can be estimated if $\sigma(\pi) / K$ is known. Because of the slope of the function, the estimate of $\omega_{0}$ will be more accurate for larger values of $\omega_{0}$.

The behavior of $\sigma(\pi) / K$ as function of $\omega_{0}$ is the only relationship we have found that allows a unique estimate of $\omega_{0}$ to be made. If we are able to predict $\omega_{0}$ in this way from airborne field data, then the $K / \alpha$ vs $\omega_{0}$ relationship can be used to convert $K$ to $\alpha$. This will then lead to an estimate of $\alpha D$ by using the uncorrected depth for $D$; and both required inherent parameters will have been determined.

The chief worry is that $\omega_{0}$ may not be able to be determined with sufficient accuracy in this way due to uncertainties in the experimentally derived values of $K$ and $\sigma(\pi)$. Furthermore, the reported $\sigma(\pi) / K$ vs $\omega_{0}$ relationship is based on a limited data set, and it may not be valid for all water types. An alternative or corroborating procedure would be helpful. Some possibilities are discussed in the next section.

### 4.3 Alternative Correction Stategies

The return signal can be periodically sampled and compared with the source laser pulse. A direct comparison of the two pulses yields an immediate indication of pulse stretching. The use of suitable statistical parameters, possibly the moments of the return pulse, could then yield an estimation of the bias appropriate to the processing electronics, without any need to perform the intermediate step of calculating the inherent water parameters. This possibility can be reviewed while constructing depth corrections for specified inherent properties by identifying those measures of the return pulse that correlate well with the computed correction independent of $\alpha \mathrm{D}$, the phase function, and $\omega_{0}$.

In the absence of good estimates of $\alpha D$ and $\omega_{0}$ or a correlation with pulse widths we would be forced to make some assumptions. We have observed that, for small linear fractional thresholds, the bias saturates for large values of $\alpha D$ (greater than about 6) and that the limiting bias is only a weak function of the phase function and $\omega_{0}$. It follows that, for these conditions, we can make a reasonable estimate of the bias from the nadir angle alone -- independent of $\alpha \mathrm{D}$ or $\omega_{0}$.

For values of $\alpha D$ less than 6 the true depth is often small (much less than 20 m ) so that the absolute error in depth may be small even though the fractional error is not. Hence, for conditions where $\alpha \mathrm{D}$ is believed to be small, it may be possible to ignore the correction. The greatest danger of a significant bias that is hard to correct is in the region of low $\alpha \mathrm{D}$ but large depth, namely, in relatively clear but deep water.

For low nadir angles of $15^{\circ}$ or less the bias is always small and negative for small fractional thresholds. When the fractional threshold is increased, the underestimate in depths is reduced; and for some intermediate threshold the bias can become quite small. For large fractional thresholds there are significant overestimates of depth when $\alpha D$ is large. It follows that the neglect of the bias may provide acceptable accuracy for operations at small nadir angles and small or intermediate linear fractional thresholds, or that cursory correctors requiring little or no knowledge of optical properties may prove to be sufficient if the threshold is adapted to the nadir angle as discussed in section 3.4 .

### 5.0 CONCLUSIONS

We have succeeded in developing a technique for investigating the impact of underwater light propagation mechanisms on laser bathymetry measurements. A Monte Carlo simulation program has been suitably adapted to yield the impulse response function (i.e., the shape and size of the return pulse for a very brief input pulse) at an airborne receiver. This calculation has been performed for a range of conditions valid for coastal waters.

The actual lidar bottom return pulses will vary considerably in shape and arrival time depending on the water depth, the scanner nadir angle, the incident laser pulse width, the optical properties of the water, the airborne system signal processing electronics, and the depth determining algorithm or procedure. These perturbations of the return signals will cause depth measurement biases which can be considerably larger than the International Hydrographic Bureau shallow water accuracy requirements.

In general, bias error predictions can be used as bias error correctors which, when applied to the raw depth measurements during post-flight data processing, will significantly reduce the magnitude of the errors. The first step in the estimation of these errors is the determination of the impulse response functions of the medium for various permutations of the relevant optical parameters. An output data set consisting of 640 impulse response functions has been generated which provides the basic results of this phase of the investigation.

We have determined that the shapes of the impulse response functions are sensitive to the nadir angle and that the width of the response (particularly the tail, or trailing edge) always increases with increasing nadir angle. The dependence on the phase function, which describes the redistribution of energy at scatterings, is not very significant, provided we specify phase functions within a reasonable range. The width of the impulse response functions increases both with increasing $\alpha D$, the vertical optical depth of the water column, and increasing $\omega_{0}$, the albedo for single scattering.

The characteristics of the impulse response function cannot be directly estimated from the parameter, KD, the product of the diffuse oceanographic attenuation coefficient and the depth. This fact is explained in terms of the behavior of the ratio of $K$ to the narrow-beam attenuation coefficient, $\alpha$, as the single-scattering albedo, $\omega_{0}$, changes.

For non-zero nadir angles, the leading edge of the impulse response function behaves approximately as a power law with an exponent of 3 to 4 ; i.e., the receiver power varies as $t^{3}$ or $t^{4}$, where $t$ is the time since the earliest return.

We have found that the biases are not very sensitive to the phase function. For non-zero nadir angles and small fractional thresholds an underestimate in depth is caused which increases towards a 1 imit as $\alpha$ D reaches 6 or 8 . This limit increases with increasing nadir angle. The biases for nadir angles of $35^{\circ}$ and $45^{\circ}$ are large and cannot be predicted to acceptable accuracy because of the uncertanties in $\omega_{0}$ and $\alpha D$. Hence, unless reliable predictions of the inherent optical properties can be found, operations at nadir angles above $25^{\circ}$ should not be undertaken. The bias is not very sensitive to $\omega_{0}$ over most of the conditions considered. With larger fractional thresholds the biases are small for $\alpha \mathrm{D}$ values of

8 or less, but the use of peak detection is not recommended because of the impact of statistical noise. The computed biases scale linearly with the true depth, and, for moderate depths, the results show that a correction may be unnecessary.

Example bias predictor/correctors have been calculated from the impulse responses alone. These predictors are reported and discussed for a wide range of nadir angle, optical depth, single-scatter albedo, and the depth algorithm threshold fraction. They are presently considered valid only for the case where the impulse response temporal width is very long compared to the incident laser pulse width (i.e., deep water) and where the signals are processed linearly with a fractional amplitude threshold for the depth determining algorithm. Bias results for realistic system responses will be available in the near future; it is felt, however, that they will probably not differ greatly from the results presented here.

In order to calculate bias predictors (and hence correctors) generally valid in all cases for a specific lidar system, one must first convolve a selected impulse response with the intrinsic laser pulse shape to obtain a prediction for the actual bottom return pulse. This signal must be "processed" in a manner consistent with the signal processing which takes place in the electronic hardware and, finally, operated upon by the depth determining algorithm to be used with actual field data.

The bias predictors are necessarily parameterized on their driving, inherent optical properties (i.e., beam attenutation coefficient and single-scatter albedo). Neither of these optical properties will be directly measured in the water as part of a typical airborne survey. It is thus necessary
to provide continuous estimates of their values based solely on specially processed, ancillary flight data. A preliminary discussion of the required data and how one might make these determinations has been given. We have also considered alternative and/or supporting bias estimation procedures that do not require knowledge of the inherent properties. This subject is being studied further as part of an on-going effort.

## REFERENCES

Chandrasekhar, S., 1960: Radiative Transer. Dover Publications, New York, N.Y., 385pp.

Gordon, H.R., 1974: Mie theory models of light scattering by ocean particulates. Suspended Solids in Water. Plenum Press, Ed. Ronald J. Gibbs, 73-86.

Gordon, H.R., Brown, O.B., Jacobs, M.M., 1975: Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean, App1. Opt., 14, 417-427.

Guenther, G.C., and Thomas, R.W.L., 1981: Error analysis of pulse location estimates for simulated bathymetric 1idar returns. Proceedings of the Laser Hydrography Symposium, Salisbury, South Australia, 30 Sept. - 3 Oct. 1980.

Hammersley, J.M., and Handscomb, D.C., 1965: Monte Carlo Methods. Metheun Monographs, London, 149 pp.

Holland, A.C., Thomas, R.W.L., and Pearce, W.A., 1977: Information content of sky polarization measurements at right angles to the solar direction. Appl. Opt., 17, 2153-2161.

Petzold, T.J., 1972: Volume scattering functions for selected ocean waters. SIO Ref. 72-78, Scripps Institution of Oceanography, San Diego, Ca., 79 pp .

Thomas, R.W.L., and Guenther, G.C., 1979: Theoretical calulations of bottom returns for bathymetric lidar. Proceedings of the International Conference on Lasers 178 , Orlando, F1a., 48-59.

Timofeyeva, V.A., 1972: Relations between certain optical properties in turbid media with different scattering patterns. Isv., Atmospheric and Oceanic Physics (Acad. of Sci., USSR), 8, 895-896.


FIGURE 1. SCHEMATIC ILLUSTRATION OF RADIATION TRANSPORT


FIGURE 2. PROPAGATION SIMULATION GEOMETRY
FIGURE 3. DEFINITION OF NARROW BEAM ATTENUATION COEFFICIENT


FIGURE 5. ILLUSTRATION OF SCALING RULE FOR ESTIMATIONS APPROPRIATE TO DIFFERENT DEPTHS


FIGURE 6. SCHEMATIC ILLUSTRATION OF VIRTUAL PHOTON SAMPLING



FIGURE 7. GEOMETRICAL RELATIONSHIPS AFFECTING IMPULSE RESPONSE FUNCTION
"NAVY WATER"

| $\alpha$ | $=0.47 \mathrm{~m}^{-1}$ |  | SLOPE |
| ---: | :--- | ---: | :--- |$=-1.546 @ 0.1^{\circ} 0$



FIGURE 8. VOLUME SCATTERING FUNCTION FOR ‘CLEAN' OR 'NAVY' WATER
"NOS WATER"

$$
\begin{aligned}
& \alpha=1.92 \mathrm{~m}^{-1} \quad \text { SLOPE }=-1.249 @ 0.1^{\circ} \\
& \omega_{0}=0.824 \quad \operatorname{VSF}\left(0.05^{\circ}\right)=10524 \\
& \mathrm{~B}=0.019 \quad \overline{\cos \theta}=0.9308
\end{aligned}
$$



FIGURE 9. VOLUME SCATTERING FUNCTION FOR 'DIRTY' OR 'NOS' WATER
FIGURE 10. PROBABILITY OF SCATTERING THROUGH LESS THAN GIVEN ANGLE



FIGURE 11. DOWNWELLING ENERGY AND TOTAL RECEIVED ENERGY AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 12. DOWNWELLING ENERGY AND TOTAL RECEIVED ENERGY AS FUNCTION OF VERTICAL OPTICAL DEPTH


OPTICAL DEPTH ( $\alpha \mathrm{D}$ )

FIGURE 13. AVERAGE VALUES OF RATIO OF DIFFUSE TO NARROW BEAM ATTENUATION COEFFICIENTS AS FUNCTION OF VERTICAL OPTICAL DEPTH

FIGURE 14.
NORMALIZED ATTENUATION COEFFICIENTS AS FUNCTION OF ALBEDO OF SINGLE SCATTERING

NADIR
$\Delta$ "NAVY" WATER (CLEAN)

- "NOS" WATER (DIRTY)

ALL RESULTS AVERAGED OVER $\boldsymbol{\alpha} D$ BETWEEN 0 AND 10
-- - TIMOFEYEVA $\left[0.23\left(1-\omega_{0}\right)\right]^{\omega_{0 / 2}}$



FIGURE 15. SPATIAL DISTRIBUTION OF PULSE ENERGY AT THE BOTTOM


FIGURE 16. RETURN PEAK POWER AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 17. RETURN PEAK POWER AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 18. AVERAGE VALUE OF THE RATIO OF THE SYSTEM POWER ATTENUATION COEFFICIENT TO NARROW-BEAM ATTENUATION COEFFICIENT AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 19. AVERAGE VALUES OF RATIOS OF SYSTEM POWER AND ENERGY ATTENUATION COEFFICIENTS TO NARROW-BEAM ATTENUATION COEFFICIENT AS FUNCTION OF SINGLE-SCATTERING ALBEDO


FIGURE 20. RATIO OF AVERAGE SYSTEM POWER ATTENUATION COEFFICIENT TO AVERAGE DIFFUSE ATTENUATION COEFFICIENT AS FUNCTION OF VERTICAL OPTICAL DEPTH



FIGURE 22. RETURN PEAK POWER AS FUNCTION OF SINGLE-SCATTER ALBEDO


FIGURE 23. DOWNWELLING ENERGY AND TOTAL RECEIVED ENERGY AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 24. MEAN SECANT OF PHOTON PATH ANGLES FROM NADIR AS FUNCTION OF VERTICAL OPTICAL DEPTH


FIGURE 25. RETURN PEAK POWER AS FUNCTION OF VERTICAL OPTICAL DEPTH at three nadir angles


FIGURE 26. RETURN PEAK POWER AS FUNCTION OF VERTICAL OPTICAL DEPTH AT THREE NADIR ANGLES







DEPTH MEGSUREMENT PIAS (CM) US OPTICAL

DEPTH MEASUREMENT BIAS (CN $)$ US OPTICAL
DEPTH AT A DEPTH OF 28
DEPTH MEASUREMENT QIAS (CM) US OPTICAL
CEFTH HTH UEPTH OF 28 n

FIGURE 29. SENSITIVITY TO PHASE FUNCTION



IMPULSE RESPOHSE FUR UEPTH=2GM THE(HS)


Figure 31. SEnsitivity to ad



FIGURE 32 A. SENSITIVITY TO NADIR ANGLE



Figure 33a. sensitivity to nadir angle




DEPTH MEASUREMENT BIAS (CM) US OPTICAL
DEPTH AT A DEPTH OF 20 M





Figure 37. SENsitivity to albedo for single scattering

 DEPTH MEASUREMENT BLAS (CM) US OPTICAL



DEPTH MEAAUREMENT RIAS (CM) US OPTICAL
DEPTH AT A DEPTH OF $2 甘$ M
figure




DEPTH MEASUREMENT BIAS (CM) US OPTICAL
DEPTH AT $A$ CEPTH OF 28 is




FIGURE 40. sENSitivity to linear fractional threshold




DEPTH MEESUREMEHT BIAS (CH) US OPTICAL
DEPTH AT A DEPTH OF 29



FIGURE 42. DEPTH MEASUREMENT BIAS VS. PULSE LOCATION THRESHOLD FRACTION


IMPULSE RESPONSE FOR DEPTH=20M TiME(MS)
FIGURE 43. VARIABILITY AT CONSTANT KD (=3)

응 IMPULSE RESFONSE FOP DEPTH=ZOM TME(NS)

ibeulse_bespouse
NAUY PHASE FUNCTION
AIR OFF-NADIR ANGLE: 15
AD=4 W $=0.4$
REAL TIME



|  | $\mathbf{4 . 4 4}$ | $\mathbf{8 . 8 8}$ | 13.32 | 17.76 |
| :--- | :--- | :--- | :--- | :--- |








FIGURE 50. IMPULSE RESPONSE FULL RISE TIMES AS FUNCTION of NADIR ANGLE


FIGURE 51. RESULTS FOR OPERATIONS AT THE NADIR





DEPTH AT A DEPTH OF 20 M
FIGURE 54. RESULTS FOR PEAK DETECTION
DEPTH HEASUREMENT EIAS (CM) US OPTICAL
DEPTH AT A DEPTH OF 20 M


DEPTH MEASUREMENT BIAS (CMM) US OPTICAL
DEPTH AT A DEPTH OF 28 M



IMPULSE RESFONSE FOR DEPTH=2OM TIME ©NS;
FIGURE 55. RESULTS FOR PRACTICAL CONDITIONS


IMPLLSE PESFDUSE FOR UEFTH $=20 M$ TIME (HS)





DEPTH MEASUREIIENT BIAS (CM) US OPTICAL
DEPTH AT A DEFTH OF 28 M



FIGURE 57. RESULTS FOR PRACTICAL CONDITIONS





FIGURE 59. RATIO OF VOLUME SCATTERING FUNCTION AT $180^{\circ}$ TO DIFFUSE ATTENUATION COEFFICIENT AS FUNCTION OF SINGLE-SCATTERING ALBEDO

## FORMAT FOR ASCII IMPULSE RESPONSE DATA BASE

RECORD 1. FORMAT (A4, 3F8.2, E11.4)

IALPHA, ZEN, TOR (J) , ALB (K) , TEMP (J , K)
where

| IALPHA | $=$ 'NAVY' or 'NOS' |
| :--- | :--- |
| ZEN | $=$ nadir angle in air (degrees) |
| $\operatorname{TOR}(J)$ | $=$ value of $\alpha D$ |
| $\operatorname{ALB}(K)$ | $=$ albedo of single scattering |
| $\operatorname{TEMP}(J, K)$ | $=\ln$ (flux at bottom) |

RECORD 2. FORMAT (50E10.3)

$$
(\operatorname{TDIST}(\mathrm{I}), \mathrm{I}=1,50)
$$

where

$$
\operatorname{TDIST}(I)=\text { sampled return in Ith time bin }
$$

NOTE: Time bin duration $=0.005 t_{w}$ for $\psi_{A I R}=0^{\circ}, 15^{\circ}$, and $25^{\circ}$

$$
\begin{aligned}
= & 0.01 t_{w} \text { for } \psi_{A I R}=35^{\circ} \text { and } 45^{\circ} \\
\text { where } t_{w}= & \text { depth transit time for } \\
& \text { unscattered radiation }
\end{aligned}
$$

# APPENDIX B <br> NUMERICAL VALUES FOR COMPUTED BIASES 





















convolution summary for navy water
zenith mate of entrya o．nn dearees bias in ei percent doint（PFRCPMTI
 bien in 1 dercent doint（DPRCPNT） $\begin{array}{lll}\text { alphatis } & 2.000 & 4.000 \\ \text { alnedo } & 0.125 & 0.125\end{array}$ 0.125
0.125 ～～ 0.125
0.175
0.175 0.175
0.125 rin
 （山najyad）tufod zuəدdəa $0 Z$ ut selq

 alohatedz
mibedo
0 an
libedo
0.90
n． 90
0.80
0.80
0.70
0.60
0.70
0.60
0.60
0.50
$c$ Uく゚い $\begin{array}{ll}2.000 & 4.000 \\ 0.175 & 0.175\end{array}$ n． 125
$n .125$
convolution sumerry for nave water
zenith snale of entryz 0.00 denrees











20 meter water

alohatas
albedo

$$
\begin{array}{ll}
n .90 & n .0 n 0 \\
0.80 & n .0 n 0 \\
n .70 & n .0 n 0 \\
0.80 & 0.0 n 0 \\
0.5 n & n .0 n 0 \\
n .4 n & n .0 n 0 \\
n .3 n & n .0 n 0 \\
0.70 & n .0 n 0
\end{array}
$$



Ias in 80 Dercent point (PFRCENT)


- \&ules fop bias in Deak (PFRCENT)






convolution summary for nevv water
zentith ongle of entrya 1500 degrees


bies in i dercent doint（PFRCFNT） $000^{\circ} 0000^{\circ} \mathrm{C}$ －0． $927-1$. OR1
 $c$
- 

$<$ +0
$c$
$c$
0
0
$c$ $a$
$\propto$
$c$
$c$ PRRCFNT，

O
0
0
0
0
0
0 $\infty \notin \infty \in \infty$
 J du
4.000 $C N$
$\sim$
$\sim$
$c$
$c$
$i$ $n$
0
$c$
$c$
$c$
$c$
$c$ $n$
$c$
$c$
$c$
$c$
$c$
$c$
 ${ }_{0}^{\circ}$ （はNココロー

$$
\begin{aligned}
& c \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$








| 앙 |
| :---: |
| C |
| $\sim$ |








$$
\begin{aligned}
& \text { c ncorccac } \\
& \text { occocmen } \\
& \dot{c} \text { coccocco }
\end{aligned}
$$

[^1]が



 ,










convolutian summarv for navv watpr
zentin anale of entrys 25.00 deapees
bIes in 1 Dereent Doint (DPRCENT)
$2.000 \quad 4.000$

$-2.272-3.074$ -2.172 -3.8RE $\begin{array}{ll}-9.976 & -3.9 n त \\ -9.8 n 4 & -3.657\end{array}$ $-7 . \cos ^{-3.471}$ $-7.571-3.710$ $-2.442 \quad-9.834$
bias in 1 dercent doint (DPRCPNT)



0.000


convolution summerv for navy water zenith andie of entrva $25.0 n$ dearees







 | $\circ$ |
| :--- |
| 0 |
| 0 |
| $\circ$ |
| - |



| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: |
|  |  |



deak (ns) for 20 meter water


|  |  |
| :---: | :---: |
|  |  |


-
0
0
0
0
0

$\qquad$

bias in 50 oercent point (PFRCPNT)


bias in an dercent point (PFRCPNT)
0.80
0.80
$n .7 n$
0.80
$n .50$
0.40
$n .3 n$
$n .70$
aldha* A
1 lhedo
0.90


$$
\begin{aligned}
& \text { (wnajudd) }
\end{aligned}
$$

convolution summary for navy water
zentin ancie of entryz $35 . n n$ denrees bias in. 1 dercent doint (PFRCENT) 2.000 4.000
6.315 -7.751 $-6.055 \quad-7.649$ -5.761 -
 -4.865 -6. 390 $\begin{array}{ll}-4.596 & -5.795 \\ -4.301 & -4.910\end{array}$ bias in 1 Dercent Doint (DERCPNT) $c$
0
$c$
+

0
$c$
$c$

bias in 10 dercent point (PFRCPNT)
$2.000 \quad 4.000$



ennvolution summarv for nave water zenfth anale of entrye ta.on dearees zenth analenfentrvenur bias in 5n nereent ooint pDFRCENTI
4. non

$$
\begin{aligned}
& -1.269 \\
& -1959
\end{aligned}
$$

$$
\begin{aligned}
& =0.959 \\
& -n .797
\end{aligned}
$$

-n.g17

$$
\begin{aligned}
& =0.400 \\
& =0.265
\end{aligned}
$$

$$
\begin{aligned}
& =n .448 \\
& =0.470
\end{aligned}
$$

$$
=0.330
$$





 14.000



water
alnhatida
albedo
0.90
0.80
0.70
0.80
0.50
0.40
0.70
0.20

results for bias in deak (PFRCFNT)


 P18e
convolution summary for navy water
zenith mate of entry＝ 45.00 dearees














年 ジッ
 $\subset \infty$
$\div \infty$
$\div \infty$

alona＊de
01 he 70
0.90
0.80
0.70
0.80
0.50
0.40
0.30
0.20


$$
2.000
$$

 alphatede
albedo
0 an

| alphateda | 2.000 | 4．nnn |
| :--- | ---: | ---: |
| albedo |  |  |

[^2]bias in ．I Dercent Doint（PFRCENT）
canvolution summary for wns water





















${ }^{-}$



| $\begin{aligned} & \text { C } \\ & \text { © } \\ & 0 \end{aligned}$ |  |
| :---: | :---: |
|  | いッワーワーッ |
|  | cóo $0^{\circ} 0^{\circ}$ |


bias in ． 1 nercent point（PFRCFNT）
4.000bias in 10 Dercent doint（PFRCPNT）c
C
c
e
0

$\qquad$




| － |  |
| :---: | :---: |
| 8 |  |
| $\bullet$ |  |




| － |  |
| :---: | :---: |
| O | めのがN＋ |
| $\pm$ | $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ |


| c |  |
| :---: | :---: |
| － |  |
|  | mi $0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$ |




| © |  |
| :---: | :---: |
| 0 |  |
| $\bigcirc$ | occoccco |




$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

zenith anale of entryz 0.0 n dearpes







convolution summary for Nos water


$$
\text { zenith anale of entry= } 15 . n 0 \text { deorees }
$$

bias in of bercent point (PFRCPNT)$2.000 \quad 4.000$
bies in 1 dercent doint (DERCFNT) bias in in dercent point (PFRCENT)
$c$
$c$
0
0
-0
convolution summary for Nos water
zenith anale of entrus 15.00 dearees



convalution summarv for NOS water
zenith anale of entryz $35.0 n$ deareps
bias in so dercent point (PFRCFNT) bias in 80 dercent doint (DFRCENT)
Alphatiz $\quad 2.000 \quad 4.000$
albedor

results for bias in Deak (PFRCFNT) 4.000
-0.530
-0.530
-0.530
-0.530
-0.530
-0.530
-0.530
-0.530

convolution summary for nins water
zenith ancie of entryz $45.0 n$ dearees

[^3]OUU $\quad 000^{\circ}$ し

bias in i dercent doint（DERCFNT）

| －10ha＊is | 2.000 | 4.000 |
| :---: | :---: | :---: |
| albedo |  |  |
| n．90 | －7．668 | －10．420 |
| n．90 | －7．297 | －10．279 |
| 0.70 | －6．975 | －9．9R3 |
| 0.60 | －6．579 | －9．385 |
| 0.50 | －6．177 | －9．677 |
| 0.40 | －5．904 | －7．773 |
| 0.30 | －4．857 | －6． 761 |
| ก． 70 | －3．267 | －6．n49 |

bise in in dercent point（PFRCENT）

bias in 20 dercent doint（PFRCENTI



## NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS - Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS - Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS - Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS - Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS - Journal quality with extensive details, mathematical developments, or data listings.
TECHNICAL MEMORANDUMS - Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:
ENVIRONMENTAL SCIENCE INFORMATION CENTER (D822)
ENVIRONMENTAL DATA AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE

6009 Executive Boulevard Rockville, MD 20852


[^0]:    Mention of a commercial company or product does not constitute an endorsement by NOAA (OA/OTES). Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

[^1]:    water
    路
    for

[^2]:    bias in 1 dercent doint（DERCPNT）
    bias in 1 dercent doint（DERCPNT）

[^3]:    bias in ． 1 nercent point（PFRCFNT）

